Minimal Lagrangian submanifolds with constant sectional curvature in indefinite complex space forms

dc.contributor.authorVrancken, Luc
dc.date.accessioned2021-12-17T10:16:44Z
dc.date.available2021-12-17T10:16:44Z
dc.date.issued1999-01-29
dc.description.abstractWe study minimal Lagrangian immersions from an indefinite real space form $M^n_s(c)$ into an indefinite complex space form $\tilde{M}^n_s(4\tilde{c})$. Provided that $c\not= \tilde{c}$, we show that $M^n$ has to be flat and we obtain an explicit description of the immersion. In the case the metric is positive definite or Lorentzian, this result was respectively obtained by Ejiri [4] and by Kriele and the author [5]. In the case that $c = \tilde{c}$, this theorem is no longer true, see for instance the examples discovered in [3] by Chen and the author.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15937
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14710
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherLagrangianen
dc.subject.otherconstant sectional curvatureen
dc.subject.othercomplex space formsen
dc.titleMinimal Lagrangian submanifolds with constant sectional curvature in indefinite complex space formsen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber1999, 644en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200053B35 Hermitian and Kählerian structuresen
tub.subject.msc200053B30 Lorentz metrics, indefinite metricsen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Preprint_644-1999.pdf
Size:
4.87 MB
Format:
Adobe Portable Document Format
Description:
Collections