Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction

dc.contributor.authorWang, Xingli
dc.contributor.authorKlingan, Katharina
dc.contributor.authorKlingenhof, Malte
dc.contributor.authorMöller, Tim
dc.contributor.authorAraújo, Jorge Ferreira de
dc.contributor.authorMartens, Isaac
dc.contributor.authorBagger, Alexander
dc.contributor.authorJiang, Shan
dc.contributor.authorRossmeisl, Jan
dc.contributor.authorDau, Holger
dc.contributor.authorStrasser, Peter
dc.date.accessioned2021-05-31T09:10:01Z
dc.date.available2021-05-31T09:10:01Z
dc.date.issued2021-02-04
dc.description.abstractCu oxides catalyze the electrochemical carbon dioxide reduction reaction (CO2RR) to hydrocarbons and oxygenates with favorable selectivity. Among them, the shape-controlled Cu oxide cubes have been most widely studied. In contrast, we report on novel 2-dimensional (2D) Cu(II) oxide nanosheet (CuO NS) catalysts with high C2+ products, selectivities (> 400 mA cm−2) in gas diffusion electrodes (GDE) at industrially relevant currents and neutral pH. Under applied bias, the (001)-orientated CuO NS slowly evolve into highly branched, metallic Cu0 dendrites that appear as a general dominant morphology under electrolyte flow conditions, as attested by operando X-ray absorption spectroscopy and in situ electrochemical transmission electron microscopy (TEM). Millisecond-resolved differential electrochemical mass spectrometry (DEMS) track a previously unavailable set of product onset potentials. While the close mechanistic relation between CO and C2H4 was thereby confirmed, the DEMS data help uncover an unexpected mechanistic link between CH4 and ethanol. We demonstrate evidence that adsorbed methyl species, *CH3, serve as common intermediates of both CH3H and CH3CH2OH and possibly of other CH3-R products via a previously overlooked pathway at (110) steps adjacent to (100) terraces at larger overpotentials. Our mechanistic conclusions challenge and refine our current mechanistic understanding of the CO2 electrolysis on Cu catalysts.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021en
dc.description.sponsorshipEC/H2020/101006701/EU/Renewable Electricity-based, cyclic and economic production of Fuel/EcoFuelen
dc.description.sponsorshipBMBF, 03SF0523A, Verbundvorhaben CO2EKAT: Elektrokatalysatorsystem für stoffliche Energiespeicherung durch gekoppelte Wasserelektrolyse und CO2-Umwandlungen
dc.identifier.eissn2041-1723
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13170
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11964
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.othercarbon capture and storageen
dc.subject.othercatalytic mechanismsen
dc.subject.otherelectrocatalysisen
dc.subject.otherenergy storageen
dc.titleMorphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreductionen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber794en
dcterms.bibliographicCitation.doi10.1038/s41467-021-20961-7en
dcterms.bibliographicCitation.journaltitleNature Communicationsen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceHeidelbergen
dcterms.bibliographicCitation.volume12en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Chemie>FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Wang_etal_Morphology_2021.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format
Description:
Collections