Mapping input noise to escape noise in integrate-and-fire neurons: a level-crossing approach

dc.contributor.authorSchwalger, Tilo
dc.date.accessioned2021-12-15T10:15:13Z
dc.date.available2021-12-15T10:15:13Z
dc.date.issued2021-10-19
dc.description.abstractNoise in spiking neurons is commonly modeled by a noisy input current or by generating output spikes stochastically with a voltage-dependent hazard rate (“escape noise”). While input noise lends itself to modeling biophysical noise processes, the phenomenological escape noise is mathematically more tractable. Using the level-crossing theory for differentiable Gaussian processes, we derive an approximate mapping between colored input noise and escape noise in leaky integrate-and-fire neurons. This mapping requires the first-passage-time (FPT) density of an overdamped Brownian particle driven by colored noise with respect to an arbitrarily moving boundary. Starting from the Wiener–Rice series for the FPT density, we apply the second-order decoupling approximation of Stratonovich to the case of moving boundaries and derive a simplified hazard-rate representation that is local in time and numerically efficient. This simplification requires the calculation of the non-stationary auto-correlation function of the level-crossing process: For exponentially correlated input noise (Ornstein–Uhlenbeck process), we obtain an exact formula for the zero-lag auto-correlation as a function of noise parameters, mean membrane potential and its speed, as well as an exponential approximation of the full auto-correlation function. The theory well predicts the FPT and interspike interval densities as well as the population activities obtained from simulations with colored input noise and time-dependent stimulus or boundary. The agreement with simulations is strongly enhanced across the sub- and suprathreshold firing regime compared to a first-order decoupling approximation that neglects correlations between level crossings. The second-order approximation also improves upon a previously proposed theory in the subthreshold regime. Depending on a simplicity-accuracy trade-off, all considered approximations represent useful mappings from colored input noise to escape noise, enabling progress in the theory of neuronal population dynamics.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021en
dc.identifier.eissn1432-0770
dc.identifier.issn0340-1200
dc.identifier.pmid34668051
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/14059
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12832
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc510 Mathematikde
dc.subject.othercolored noiseen
dc.subject.otherescape noiseen
dc.subject.otherfirst-passage-time densityen
dc.subject.otherhazard rateen
dc.subject.otherintegrate-and-fire neuronen
dc.subject.otherinterspike interval densityen
dc.subject.otherneuronal population dynamicsen
dc.subject.otherthreshold-crossing statisticsen
dc.titleMapping input noise to escape noise in integrate-and-fire neurons: a level-crossing approachen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1007/s00422-021-00899-1en
dcterms.bibliographicCitation.issue5en
dcterms.bibliographicCitation.journaltitleBiological Cyberneticsen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceBerlin ; Heidelbergen
dcterms.bibliographicCitation.pageend562en
dcterms.bibliographicCitation.pagestart539en
dcterms.bibliographicCitation.volume115en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Mathematik::FG Daten-Assimilation in den Neurowissenschaftende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Daten-Assimilation in den Neurowissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
schwalger_etal_2021.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:

Collections