How do the fluid dynamics change for gravity-destabilized film flow on structured surfaces? An experimental investigation using light-induced fluorescence

dc.contributor.authorRaddant, Hannes
dc.contributor.authorBrösigke, Georg
dc.contributor.authorHoffmann, Christian
dc.contributor.authorIllner, Markus
dc.contributor.authorRepke, Jens-Uwe
dc.date.accessioned2023-10-09T11:56:19Z
dc.date.available2023-10-09T11:56:19Z
dc.date.issued2023-06-30
dc.description.abstractLiquid film flow is the dominant flow regime in distillation and absorption processes within structured packings. Extensive research has been carried out to improve the understanding of the involved fluid dynamics. Up to now, these investigations mainly focused on gravity-stabilized film flow, i.e., the liquid phase flows over a packing in counter-current flow with a gas phase. In contrast, gravity-destabilized film flow is studied much less frequently although this type of flow applies to about half of the cases in a column with structured packings. Here, the liquid runs along the underside of the packing, also in counter-current flow with the gas phase. To close the gap in the experimental data, this contribution investigates the fundamental fluid dynamics of gravity-destabilized liquid film flows on a smooth plate, a 2D wave texture, and a 3D pyramidal texture. Results on critical convective inclination angle, drained liquid mass flow, and liquid film thickness without counter-current gas flow are reported and compared to numerical results from literature. In the experiments, the Reynolds number is varied from 28.4 to 113.5 using a surfactant-modified aqueous system. The 2D structure showed decreased liquid flow stability compared to the smooth surface. However, the 3D structure seems to have a stabilizing effect on the flow.en
dc.description.sponsorshipDFG, 426726119, Einfluss strukturierter Oberflächen und einer Gasgegenströmung auf die hängende Filmströmung bei der Ausbildung von Rayleigh-Taylor Instabilitäten
dc.identifier.eissn1744-3563
dc.identifier.issn0263-8762
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/20146
dc.identifier.urihttps://doi.org/10.14279/depositonce-18944
dc.language.isoen
dc.publisherElsevier BV
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc600 Technik, Medizin, angewandte Wissenschaften::660 Chemische Verfahrenstechnik::660 Chemische Verfahrenstechnik
dc.subject.otherfluid dynamicsen
dc.subject.otherfilm flowen
dc.subject.otherstructured surfaceen
dc.subject.otherRayleigh-Taylor instabilityen
dc.subject.othernegative inclination angleen
dc.titleHow do the fluid dynamics change for gravity-destabilized film flow on structured surfaces? An experimental investigation using light-induced fluorescence
dc.typeArticle
dc.type.versionacceptedVersion
dcterms.bibliographicCitation.doi10.1016/j.cherd.2023.06.052
dcterms.bibliographicCitation.journaltitleChemical Engineering Research and Design
dcterms.bibliographicCitation.originalpublishernameElsevier
dcterms.bibliographicCitation.originalpublisherplaceAmsterdam
dcterms.bibliographicCitation.pageend403
dcterms.bibliographicCitation.pagestart390
dcterms.bibliographicCitation.volume196
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Prozess- und Verfahrenstechnik::FG Dynamik und Betrieb technischer Anlagen
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Raddant_etal_How_2023.pdf
Size:
17.93 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.23 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections