Piezo-Polymer-Composite Unimorph Actuators for Active Cancellation of Flow Instabilities Across Airfoils

dc.contributor.authorHaller, Daniel
dc.contributor.authorPätzold, A.
dc.contributor.authorLosse, N.
dc.contributor.authorNeiss, S.
dc.contributor.authorPeltzer, Inken
dc.contributor.authorNitsche, W.
dc.contributor.authorKing, Rudibert
dc.contributor.authorWoias, P.
dc.date.accessioned2019-01-08T17:37:00Z
dc.date.available2019-01-08T17:37:00Z
dc.date.issued2011
dc.descriptionDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.de
dc.descriptionThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.en
dc.description.abstractThis article presents a smart device for active cancellation of flow instabilities. An array of two piezo unimorph actuators fabricated in piezo-polymer-composite technology is combined with a thin silicone membrane to mimic a movable wall with a closed surface. By locally displacing the thin membrane, a surface wave is generated that interferes with naturally occurring flow instabilities within the boundary layer of an airfoil. Using flow sensors and an intelligent control enables a destructive interference and therefore, an attenuation of natural flow instabilities. This leads to a delay of transition. The boundary layer remains laminar which means drag is reduced. Within the next pages, the setup of the device with actuators, membrane, sensors, and control is introduced. The main focus of this article is on actuator design, modeling, and implementation for wind tunnel experiments. Results of actuator characterization are presented. The non-linear behavior of the piezoactuator (harmonic distortions and impact of high electric fields) is investigated in detail. This study concludes with the results obtained in wind tunnel experiments which prove the functionality of the presented approach. A maximal attenuation of natural occurring flow instabilities of 80% is achieved.en
dc.description.sponsorshipDFG, SPP 1207, Strömungsbeeinflussung in der Natur und Techniken
dc.identifier.eissn1530-8138
dc.identifier.issn1045-389X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/8867
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-7996
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc600 Technik, Technologiede
dc.subject.ddc670 Industrielle Fertigungde
dc.subject.otheractuatoren
dc.subject.otherpiezoelectricen
dc.subject.otherpolymersen
dc.subject.otherunimorphen
dc.subject.otherharmonic distortionsen
dc.subject.otheractive transition controlen
dc.subject.otherTS wavesen
dc.subject.othernon-linear piezoeffectsen
dc.subject.otherelectrostrictionen
dc.subject.otherelastostrictionen
dc.titlePiezo-Polymer-Composite Unimorph Actuators for Active Cancellation of Flow Instabilities Across Airfoilsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1177/1045389X10395794
dcterms.bibliographicCitation.issue5
dcterms.bibliographicCitation.journaltitleJournal of Intelligent Material Systems and Structuresen
dcterms.bibliographicCitation.originalpublishernameSAGE Publicationsen
dcterms.bibliographicCitation.originalpublisherplaceWashington, DCen
dcterms.bibliographicCitation.pageend474
dcterms.bibliographicCitation.pagestart461
dcterms.bibliographicCitation.volume22
tub.accessrights.dnbdomain
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Prozess- und Verfahrenstechnik::FG Mess- und Regelungstechnikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Mess- und Regelungstechnikde
tub.affiliation.instituteInst. Prozess- und Verfahrenstechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Haller_et_al_2011.pdf
Size:
1 MB
Format:
Adobe Portable Document Format

Collections