The Frobenius-Jordan form of nonnegative matrices

dc.contributor.authorMehrmann, Volker
dc.contributor.authorSaha, Manideepa
dc.date.accessioned2021-12-17T10:10:48Z
dc.date.available2021-12-17T10:10:48Z
dc.date.issued2012-06-21
dc.description.abstractIn this paper we use preferred and quasi-preferred bases of generalized eigenspaces associated with the spectral radius of nonnegative matrices to analyze the existence and uniqueness of a variant of the Jordan canonical form which we call Frobenius-Jordan form. It is a combination of the classical Jordan canonical form in the part associated with the eigenvalues that are different from the spectral radius, while it is like the Frobenius normal form in the part associated with the spectral radius. Based on the Frobenius-Jordan form, spectral and combinatorial properties of nonnegative matrices are discussed. In particular, we analyze the existence of nonnegative graph representations of the generalized eigenspace associated with the spectral radius.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15761
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14534
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherpreferred basisen
dc.subject.otherquasi-preferred basisen
dc.subject.otherFrobenius-Jordan formen
dc.titleThe Frobenius-Jordan form of nonnegative matricesen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2012, 21en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200015A48 Positive matrices and their generalizations; cones of matricesen
tub.subject.msc200015A21 Canonical forms, reductions, classificationen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
MehS12_ppt.pdf
Size:
287.81 KB
Format:
Adobe Portable Document Format
Description:
Collections