Thumbnail Image

How to tackle complexity in urban climate resilience? Negotiating climate science, adaptation and multi-level governance in India

Sethi, Mahendra; Sharma, Richa; Mohapatra, Subhakanta; Mittal, Shilpi

As the world’s population is expected to be over 2/3rd urban by 2050, climate action in cities is a growing area of interest in the inter-disciplines of development policy, disaster mitigation and environmental governance. The climate impacts are expected to be quite severe in the developing world, given its urban societies are densely packed, vastly exposed to natural elements while possessing limited capabilities. There is a notable ambiguity and complexity that inhibits a methodical approach in identifying urban resilience measures. The complexity is due to intersection of large number of distinct variables in climate geoscience (precipitation and temperature anomalies at different locations, RCPs, timeline), adaptation alternatives (approach, priority, intervention level) and urban governance (functional mandate, institutional capacity, and plans & policies). This research examines how disparate and complex knowledge and information in these inter-disciplines can be processed for systematic ‘negotiation’ to situate, ground and operationalize resilience in cities. With India as a case, we test this by simulating mid-term and long-run climate scenarios (2050 & 2080) to map regional climate impacts that shows escalation in the intensity of climate events like heat waves, urban flooding, landslides and sea level rise. We draw on suitable adaptation measures for five key urban sectors- water, infrastructure (including energy), building, urban planning, health and conclude a sleuth of climate resilience building measures for policy application through national/ state policies, local urban plans and preparation of city resilience strategy, as well as advance the research on ‘negotiated resilience’ in urban areas
Published in: PLOS ONE, 10.1371/journal.pone.0253904, PLOS