Hyperbolic generalized triangle groups, property (T) and finite simple quotients

dc.contributor.authorCaprace, Pierre‐Emmanuel
dc.contributor.authorConder, Marston
dc.contributor.authorKaluba, Marek
dc.contributor.authorWitzel, Stefan
dc.date.accessioned2023-05-17T07:24:20Z
dc.date.available2023-05-17T07:24:20Z
dc.date.issued2022-08-05
dc.date.updated2023-04-19T22:51:13Z
dc.description.abstractWe construct several series of explicit presentations of infinite hyperbolic groups enjoying Kazhdan's property (T). Some of them are significantly shorter than the previously known shortest examples. Moreover, we show that some of those hyperbolic Kazhdan groups possess finite simple quotient groups of arbitrarily large rank; they constitute the first‐known specimens combining those properties. All the hyperbolic groups we consider are non‐positively curved k‐fold generalized triangle groups, that is, groups that possess a simplicial action on a CAT(0) triangle complex, which is sharply transitive on the set of triangles, and such that edge‐stabilizers are cyclic of order k. Appendices A, B and C are provided separately as supplementary material with the published article.en
dc.identifier.eissn1469-7750
dc.identifier.issn0024-6107
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/18879
dc.identifier.urihttps://doi.org/10.14279/depositonce-17684
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.subject.otherinfinite hyperbolic groupsen
dc.subject.otherfinite simple quotientsen
dc.subject.otherKazhdan's property (T)en
dc.subject.otherhyperbolic Kazhdan groupsen
dc.subject.otherk-folden
dc.titleHyperbolic generalized triangle groups, property (T) and finite simple quotientsen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.doi10.1112/jlms.12668
dcterms.bibliographicCitation.issue4
dcterms.bibliographicCitation.journaltitleJournal of the London Mathematical Societyen
dcterms.bibliographicCitation.originalpublishernameWiley
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY
dcterms.bibliographicCitation.pageend3637
dcterms.bibliographicCitation.pagestart3577
dcterms.bibliographicCitation.volume106
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Mathematik::FG Diskrete Mathematik / Geometrie
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
JLMS_JLMS12668.pdf
Size:
867.54 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections