On-line learning algorithms for extracting respiratory activity from single lead ECGs based on principal component analysis
dc.contributor.author | Pflugradt, Maik | |
dc.contributor.author | Mann, Steffen | |
dc.contributor.author | Feller, Viktor | |
dc.contributor.author | Orglmeister, Reinhold | |
dc.date.accessioned | 2017-11-28T08:49:35Z | |
dc.date.available | 2017-11-28T08:49:35Z | |
dc.date.issued | 2012 | |
dc.description | Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich. | de |
dc.description | This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. | en |
dc.description.abstract | In this paper we present several statistic gradient algorithms from literature to solve the Principal Component Analysis (PCA) problem. We used a linear artificial neural network forming the basis of the implemented algorithms which is a neat way for on-line computation of the PCA expansion. As convergence is a key-aspect of these algorithms and is cru-cial for the usefulness in particular applications, we compared the different learning rules with respect to their suitability in ECG signal processing. Recent studies have shown, that a surrogate respiratory signal can be derived from single-lead ECGs by applying PCA. Since the traditionally applied closed-form computations of PCA are numerically demanding, it seems promising to resort to an adaptive approach when dealing with changing environments like the ECG. | en |
dc.identifier.eissn | 0013-5585 | |
dc.identifier.issn | 1862-278X | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/7200 | |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-6475 | |
dc.language.iso | en | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 610 Medizin und Gesundheit | |
dc.title | On-line learning algorithms for extracting respiratory activity from single lead ECGs based on principal component analysis | en |
dc.type | Article | |
dc.type.version | publishedVersion | |
dcterms.bibliographicCitation.doi | 10.1515/bmt-2012-4149 | |
dcterms.bibliographicCitation.issue | suppl. 1 | |
dcterms.bibliographicCitation.journaltitle | Biomedical engineering = Biomedizinische Technik | |
dcterms.bibliographicCitation.originalpublishername | De Gruyter | |
dcterms.bibliographicCitation.originalpublisherplace | Berlin [u.a.] | |
dcterms.bibliographicCitation.pageend | 354 | |
dcterms.bibliographicCitation.pagestart | 352 | |
dcterms.bibliographicCitation.volume | 57 | |
tub.accessrights.dnb | domain | |
tub.affiliation | Fak. 4 Elektrotechnik und Informatik::Inst. Energie- und Automatisierungstechnik::FG Elektronik und medizinische Signalverarbeitung | de |
tub.affiliation.faculty | Fak. 4 Elektrotechnik und Informatik | de |
tub.affiliation.group | FG Elektronik und medizinische Signalverarbeitung | de |
tub.affiliation.institute | Inst. Energie- und Automatisierungstechnik | de |
tub.publisher.universityorinstitution | Technische Universität Berlin |
Files
Original bundle
1 - 1 of 1
Loading…
- Name:
- bmt-2012-4149.pdf
- Size:
- 573.48 KB
- Format:
- Adobe Portable Document Format
- Description: