A model‐based framework for parallel scale‐down fed‐batch cultivations in mini‐bioreactors for accelerated phenotyping

dc.contributor.authorAnane, Emmanuel
dc.contributor.authorGarcía, Ángel Córcoles
dc.contributor.authorHaby, Benjamin
dc.contributor.authorHans, Sebastian
dc.contributor.authorKrausch, Niels
dc.contributor.authorKrewinkel, Manuel
dc.contributor.authorHauptmann, Peter
dc.contributor.authorNeubauer, Peter
dc.contributor.authorCruz-Bournazou, Mariano Nicolas
dc.date.accessioned2020-02-13T14:53:39Z
dc.date.available2020-02-13T14:53:39Z
dc.date.issued2019-07-30
dc.description.abstractConcentration gradients that occur in large industrial‐scale bioreactors due to mass transfer limitations have significant effects on process efficiency. Hence, it is desirable to investigate the response of strains to such heterogeneities to reduce the risk of failure during process scale‐up. Although there are various scale‐down techniques to study these effects, scale‐down strategies are rarely applied in the early developmental phases of a bioprocess, as they have not yet been implemented on small‐scale parallel cultivation devices. In this study, we combine mechanistic growth models with a parallel mini‐bioreactor system to create a high‐throughput platform for studying the response of Escherichia coli strains to concentration gradients. As a scaled‐down approach, a model‐based glucose pulse feeding scheme is applied and compared with a continuous feed profile to study the influence of glucose and dissolved oxygen gradients on both cell physiology and incorporation of noncanonical amino acids into recombinant proinsulin. The results show a significant increase in the incorporation of the noncanonical amino acid norvaline in the soluble intracellular extract and in the recombinant product in cultures with glucose/oxygen oscillations. Interestingly, the amount of norvaline depends on the pulse frequency and is negligible with continuous feeding, confirming observations from large‐scale cultivations. Most importantly, the results also show that a larger number of the model parameters are significantly affected by the scale‐down scheme, compared with the reference cultivations. In this example, it was possible to describe the effects of oscillations in a single parallel experiment. The platform offers the opportunity to combine strain screening with scale‐down studies to select the most robust strains for bioprocess scale‐up.en
dc.description.sponsorshipEC/H2020/643056/EU/Rapid Bioprocess Development/Biorapiden
dc.description.sponsorshipTU Berlin, Open-Access-Mittel - 2019en
dc.identifier.eissn1097-0290
dc.identifier.issn0006-3592
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10769
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9664
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 Biowissenschaften; Biologieen
dc.subject.otherEscherichia colien
dc.subject.othermini‐bioreactorsen
dc.subject.othermodelingen
dc.subject.otherscale‐downen
dc.subject.otherscale‐up effectsen
dc.titleA model‐based framework for parallel scale‐down fed‐batch cultivations in mini‐bioreactors for accelerated phenotypingen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/bit.27116
dcterms.bibliographicCitation.issue11
dcterms.bibliographicCitation.journaltitleBiotechnology and Bioengineeringen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.pageend2918
dcterms.bibliographicCitation.pagestart2906
dcterms.bibliographicCitation.volume116
tub.accessrights.dnbfree
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Biotechnologie::FG Bioverfahrenstechnikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Bioverfahrenstechnikde
tub.affiliation.instituteInst. Biotechnologiede
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 4 of 4
Loading…
Thumbnail Image
Name:
Anane_et_al-2019-Biotechnology_and_Bioengineering.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Loading…
Thumbnail Image
Name:
bit27116-sup-0001-figure_a_1.tiff
Size:
10.83 MB
Format:
Tag Image File Format
Description:
Supporting information
Loading…
Thumbnail Image
Name:
bit27116-sup-0002-figure_a_2.tiff
Size:
7.79 MB
Format:
Tag Image File Format
Description:
Supporting information
No Thumbnail Available
Name:
bit27116-sup-0003-supplementary_material.docx
Size:
21.22 KB
Format:
Microsoft Word XML
Description:
Supporting information

Collections