Thumbnail Image

An Unsupervised Multicode Hashing Method for Accurate and Scalable Remote Sensing Image Retrieval

Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo

FG Remote Sensing Image Analysis Group

Hashing methods have recently attracted great attention for approximate nearest neighbor search in massive remote sensing (RS) image archives due to their computational and storage effectiveness. The existing hashing methods in RS represent each image with a single-hash code that is usually obtained by applying hash functions to global image representations. Such an approach may not optimally represent the complex information content of RS images. To overcome this problem, in this letter, we present a simple yet effective unsupervised method that represents each image with primitive-cluster sensitive multi-hash codes (each of which corresponds to a primitive present in the image). To this end, the proposed method consists of two main steps: 1) characterization of images by descriptors of primitive-sensitive clusters and 2) definition of multi-hash codes from the descriptors of the primitive-sensitive clusters. After obtaining multi-hash codes for each image, retrieval of images is achieved based on a multi-hash-code-matching scheme. Any hashing method that provides single-hash code can be embedded within the proposed method to provide primitive-sensitive multi-hash codes. Compared with state-of-the-art single-code hashing methods in RS, the proposed method achieves higher retrieval accuracy under the same retrieval time, and thus it is more efficient for operational applications.
  • © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.