Laser-driven resonant magnetic soft-x-ray scattering for probing ultrafast antiferromagnetic and structural dynamics

dc.contributor.authorSchick, Daniel
dc.contributor.authorBorchert, Martin
dc.contributor.authorBraenzel, Julia
dc.contributor.authorStiel, Holger
dc.contributor.authorTümmler, Johannes
dc.contributor.authorBürgler, Daniel E.
dc.contributor.authorFirsov, Alexander
dc.contributor.authorKorff Schmising, Clemens von
dc.contributor.authorPfau, Bastian
dc.contributor.authorEisebitt, Stefan
dc.date.accessioned2021-11-08T14:27:49Z
dc.date.available2021-11-08T14:27:49Z
dc.date.issued2021-09
dc.description.abstractTime-resolved resonant magnetic scattering in the soft-x-ray range is a powerful tool for accessing the spatially resolved and element-specific spin dynamics in magnetic materials. So far, the application of this photon-demanding technique was limited to large-scale facilities. However, upgrades to diffraction-limited storage rings supporting only x-ray pulses beyond 100 ps, and the shift of x-ray free-electron lasers toward attosecond pulses aggravate the competition for beamtime in the picosecond time window, which is of utmost relevance for magnetism research. Here we present the development of a lab-based instrument providing sufficient photon flux up to 1.5 keV photon energy covering the soft-x-ray resonances of transition and rare-earth metal atoms. Our setup features the mandatory tunability in energy and reciprocal space in combination with sub-10 ps temporal resolution, exploiting the broadband emission of a laser-driven plasma x-ray source, which is monochromatized to about 1 eV bandwidth by a reflection zone plate. We benchmark our approach against accelerator-based soft-x-ray sources by simultaneously probing the laser-induced magnetic and structural dynamics from an antiferromagnetically coupled Fe/Cr superlattice. Our development lays the foundation for laser-driven resonant scattering experiments to study ultrafast ordering phenomena of charges, spins, and orbitals.en
dc.description.sponsorshipDFG, 328545488, TRR 227: Ultraschnelle Spindynamiken
dc.identifier.eissn2334-2536
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13845
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12621
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.othersoft-x-ray scatteringen
dc.subject.otherstructural dynamicsen
dc.subject.otherantiferromagnetic dynamicsen
dc.subject.othermagnetic scatteringen
dc.subject.othermagnetic materialsen
dc.titleLaser-driven resonant magnetic soft-x-ray scattering for probing ultrafast antiferromagnetic and structural dynamicsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1364/OPTICA.435522en
dcterms.bibliographicCitation.issue9en
dcterms.bibliographicCitation.journaltitleOpticaen
dcterms.bibliographicCitation.originalpublishernameOSAen
dcterms.bibliographicCitation.originalpublisherplaceWashington, DCen
dcterms.bibliographicCitation.pageend1242en
dcterms.bibliographicCitation.pagestart1237en
dcterms.bibliographicCitation.volume8en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Optik und Atomare Physik>FG Röntgenoptik und Nanometer-Optikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Röntgenoptik und Nanometer-Optikde
tub.affiliation.instituteInst. Optik und Atomare Physikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Schick_etal_Laser-driven_2021.pdf
Size:
3.59 MB
Format:
Adobe Portable Document Format
Description:
Collections