Thermal evolution and Urey ratio of Mars

dc.contributor.authorPlesa, A.-C.
dc.contributor.authorTosi, Nicola
dc.contributor.authorGrott, M.
dc.contributor.authorBreuer, D.
dc.date.accessioned2020-01-27T12:35:37Z
dc.date.available2020-01-27T12:35:37Z
dc.date.issued2015-03-16
dc.description©2015. American Geophysical Unionen
dc.description.abstractThe upcoming InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission, to be launched in 2016, will carry out the first in situ Martian heat flux measurement, thereby providing an important baseline to constrain the present‐day heat budget of the planet and, in turn, the thermal and chemical evolution of its interior. The surface heat flux can be used to constrain the amount of heat‐producing elements present in the interior if the Urey ratio (Ur)—the planet's heat production rate divided by heat loss—is known. We used numerical simulations of mantle convection to model the thermal evolution of Mars and determine the present‐day Urey ratio for a variety of models and parameters. We found that Ur is mainly sensitive to the efficiency of mantle cooling, which is associated with the temperature dependence of the viscosity (thermostat effect), and to the abundance of long‐lived radiogenic isotopes. If the thermostat effect is efficient, as expected for the Martian mantle, assuming typical solar system values for the thorium‐uranium ratio and a bulk thorium concentration, simulations show that the present‐day Urey ratio is approximately constant, independent of model parameters. Together with an estimate of the average surface heat flux as determined by InSight, models of the amount of heat‐producing elements present in the primitive mantle can be constrained.en
dc.identifier.eissn2169-9100
dc.identifier.issn2169-9097
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10629
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9556
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc550 Geowissenschaftende
dc.subject.otherMarsen
dc.subject.otherUrey ratioen
dc.subject.otherthermal evolutionen
dc.subject.othermantle convectionen
dc.subject.othersurface heat fluxen
dc.subject.otherInSight missionen
dc.titleThermal evolution and Urey ratio of Marsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/2014JE004748en
dcterms.bibliographicCitation.issue5en
dcterms.bibliographicCitation.journaltitleJournal of Geophysical Research: Planetsen
dcterms.bibliographicCitation.originalpublishernameWiley ; American Geophysical Union (AGU)en
dcterms.bibliographicCitation.originalpublisherplaceHoboken, NJen
dcterms.bibliographicCitation.pageend1010en
dcterms.bibliographicCitation.pagestart995en
dcterms.bibliographicCitation.volume120en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Zentrum für Astronomie und Astrophysikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteZentrum für Astronomie und Astrophysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 2 of 2
Loading…
Thumbnail Image
Name:
Tosi_et_al-2015-Journal_of_Geophysical_Research__Planets.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format
Description:
Loading…
Thumbnail Image
Name:
jgre20384-sup-0001-supplementary.pdf
Size:
327.95 KB
Format:
Adobe Portable Document Format
Description:
Collections