Loading…
On locally definitizable matrix functions
On locally definitizable matrix functions
Azizov, Tomas; Jonas, Peter
Inst. Mathematik
For a domain $\Omega$ of the extended complex plane, classes of R-symmetric piecewise meromorphic matrix functions $G$ in $\Omega \setminus \overline{R}$ are studied. If $G$ is locally definitizable in $\Omega$ or a local generalized Nevanlinna function in $\Omega$, then the same is true for the inverse of $G$. The results are applied to an abstract boundary value problem with eigenvalue parameter in the boundary condition.