Entropy production at criticality in a nonequilibrium Potts model

dc.contributor.authorMartynec, Thomas
dc.contributor.authorKlapp, Sabine H. L.
dc.contributor.authorLoos, Sarah A. M.
dc.date.accessioned2020-12-01T13:06:29Z
dc.date.available2020-12-01T13:06:29Z
dc.date.issued2020-09-22
dc.description.abstractUnderstanding nonequilibrium systems and the consequences of irreversibility for the system's behavior as compared to the equilibrium case, is a fundamental question in statistical physics. Here, we investigate two types of nonequilibrium phase transitions, a second-order and an infinite-order phase transition, in a prototypical q-state vector Potts model which is driven out of equilibrium by coupling the spins to heat baths at two different temperatures. We discuss the behavior of the quantities that are typically considered in the vicinity of (equilibrium) phase transitions, like the specific heat, and moreover investigate the behavior of the entropy production (EP), which directly quantifies the irreversibility of the process. For the second-order phase transition, we show that the universality class remains the same as in equilibrium. Further, the derivative of the EP rate with respect to the temperature diverges with a power-law at the critical point, but displays a non-universal critical exponent, which depends on the temperature difference, i.e., the strength of the driving. For the infinite-order transition, the derivative of the EP exhibits a maximum in the disordered phase, similar to the specific heat. However, in contrast to the specific heat, whose maximum is independent of the strength of the driving, the maximum of the derivative of the EP grows with increasing temperature difference. We also consider entropy fluctuations and find that their skewness increases with the driving strength, in both cases, in the vicinity of the second-order transition, as well as around the infinite-order transition.en
dc.description.sponsorshipDFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzepteen
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2020en
dc.identifier.eissn1367-2630
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12093
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10968
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.othernonequilibrium phase transitionsen
dc.subject.othercritical behavioren
dc.subject.otherentropy productionen
dc.subject.otherMonte-Carlo simulationsen
dc.titleEntropy production at criticality in a nonequilibrium Potts modelen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber093069en
dcterms.bibliographicCitation.doi10.1088/1367-2630/abb5f0en
dcterms.bibliographicCitation.journaltitleNew Journal of Physicsen
dcterms.bibliographicCitation.originalpublishernameInstitute of Physics Publishingen
dcterms.bibliographicCitation.originalpublisherplaceLondonen
dcterms.bibliographicCitation.volume22en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Theoretische Physik::FG Computersimulationen und Theorie komplexer Fluidede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Computersimulationen und Theorie komplexer Fluidede
tub.affiliation.instituteInst. Theoretische Physikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Martynec_etal_Entropy_2020.pdf
Size:
3.06 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections