Modeling elongational viscosity and brittle fracture of polystyrene solutions

dc.contributor.authorWagner, Manfred H.
dc.contributor.authorNarimissa, Esmaeil
dc.contributor.authorPoh, Leslie
dc.contributor.authorShahid, Taisir
dc.date.accessioned2021-09-13T10:54:08Z
dc.date.available2021-09-13T10:54:08Z
dc.date.issued2021-06-14
dc.description.abstractElongational viscosity data of well-characterized solutions of 3–50% weight fraction of monodisperse polystyrene PS-820k (molar mass of 820,000 g/mol) dissolved in oligomeric styrene OS8.8 (molar mass of 8800 g/mol) as reported by André et al. (Macromolecules 54:2797–2810, 2021) are analyzed by the Extended Interchain Pressure (EIP) model including the effects of finite chain extensibility. Excellent agreement between experimental data and model predictions is obtained, based exclusively on the linear-viscoelastic characterization of the polymer solutions. The data were obtained by a filament stretching rheometer, and at high strain rates and lower polymer concentrations, the stretched filaments fail by rupture before reaching the steady-state elongational viscosity. Filament rupture is predicted by a criterion for brittle fracture of entangled polymer liquids, which assumes that fracture is caused by scission of primary C-C bonds of polymer chains when the strain energy reaches the bond-dissociation energy of the covalent bond (Wagner et al., J. Rheology 65:311–324, 2021).en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021en
dc.identifier.eissn1435-1528
dc.identifier.issn0035-4511
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13533
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12316
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc600 Technik, Technologiede
dc.subject.otherpolymer melten
dc.subject.otherpolymer solutionen
dc.subject.otherfractureen
dc.subject.otherfailureen
dc.subject.otherchain scissionen
dc.subject.otherelongationen
dc.subject.otherEIP modelen
dc.subject.otherinterchain pressureen
dc.subject.otherfinite extensibilityen
dc.titleModeling elongational viscosity and brittle fracture of polystyrene solutionsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1007/s00397-021-01277-1en
dcterms.bibliographicCitation.journaltitleRheologica Actaen
dcterms.bibliographicCitation.originalpublishernameSpringer Natureen
dcterms.bibliographicCitation.originalpublisherplaceHeidelbergen
dcterms.bibliographicCitation.pageend396en
dcterms.bibliographicCitation.pagestart385en
dcterms.bibliographicCitation.volume60en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften>Inst. Werkstoffwissenschaften und -technologien>FG Polymertechnik und Polymerphysikde
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Polymertechnik und Polymerphysikde
tub.affiliation.instituteInst. Werkstoffwissenschaften und -technologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Wagner_etal_Modeling_2021.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Description:
Collections