Origin and Acceleration of Insoluble Li2S2−Li2S Reduction Catalysis in Ferromagnetic Atoms‐based Lithium‐Sulfur Battery Cathodes

dc.contributor.authorYan, Rui
dc.contributor.authorZhao, Zhenyang
dc.contributor.authorCheng, Menghao
dc.contributor.authorYang, Zhao
dc.contributor.authorCheng, Chong
dc.contributor.authorLiu, Xikui
dc.contributor.authorYin, Bo
dc.contributor.authorLi, Shuang
dc.date.accessioned2023-05-16T12:44:25Z
dc.date.available2023-05-16T12:44:25Z
dc.date.issued2022-12-01
dc.date.updated2023-04-19T13:49:12Z
dc.description.abstractAccelerating insoluble Li2S2−Li2S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high‐efficient lithium‐sulfur battery cathodes, such as single‐atom catalysts by offering high‐density active sites to realize in situ reaction with solid Li2S2. However, the profound origin of diverse single‐atom species on solid‐solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2S2−Li2S reduction catalysis in ferromagnetic elements‐based single‐atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe−N4‐based cathodes exhibit the fastest deposition kinetics of Li2S (226 mAh g−1) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2S2−Li2S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long‐life batteries.en
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2022
dc.identifier.eissn1521-3773
dc.identifier.issn1433-7851
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/18804
dc.identifier.urihttps://doi.org/10.14279/depositonce-17610
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.subject.otherenergy storageen
dc.subject.otherferromagnetic elementen
dc.subject.otherinsoluble Li2S2−Li2S reductionen
dc.subject.otherlithium-sulfur batteryen
dc.subject.otherpolar single-atom catalystsen
dc.titleOrigin and Acceleration of Insoluble Li2S2−Li2S Reduction Catalysis in Ferromagnetic Atoms‐based Lithium‐Sulfur Battery Cathodesen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumbere202215414
dcterms.bibliographicCitation.doi10.1002/anie.202215414
dcterms.bibliographicCitation.issue1
dcterms.bibliographicCitation.journaltitleAngewandte Chemie International Editionen
dcterms.bibliographicCitation.originalpublishernameWiley
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY
dcterms.bibliographicCitation.volume62
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Funktionsmaterialien
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ANIE_ANIE202215414.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections