State-constrained optimal control of the stationary Navier-Stokes equations
dc.contributor.author | de los Reyes, Juan Carlos | |
dc.contributor.author | Griesse, Roland | |
dc.date.accessioned | 2022-05-11T12:11:31Z | |
dc.date.available | 2022-05-11T12:11:31Z | |
dc.date.issued | 2005-09-01 | |
dc.description.abstract | In this paper, the optimal control problem of the stationary Navier-Stokes equations in the presence of state constraints is investigated. We prove the existence of an optimal solution and derive first order necessary optimality conditions. The regularity of the adjoint state and the state constraint multiplier is also studied. Finally, the Lipschitz stability of the optimal control, state and adjoint variables with respect to perturbations is proved. | en |
dc.identifier.issn | 2197-8085 | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/16873 | |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-15651 | |
dc.language.iso | en | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 510 Mathematik | en |
dc.subject.other | optimal control | en |
dc.subject.other | Navier-Stokes equations | en |
dc.subject.other | state constraints | en |
dc.subject.other | Lipschitz stability | en |
dc.title | State-constrained optimal control of the stationary Navier-Stokes equations | en |
dc.type | Research Paper | en |
dc.type.version | submittedVersion | en |
tub.accessrights.dnb | free | |
tub.affiliation | Fak. 2 Mathematik und Naturwissenschaften>Inst. Mathematik | de |
tub.affiliation.faculty | Fak. 2 Mathematik und Naturwissenschaften | de |
tub.affiliation.institute | Inst. Mathematik | de |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
tub.series.issuenumber | 2005, 22 | en |
tub.series.name | Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin | en |
tub.subject.msc2000 | 35Q35 Other equations arising in fluid mechanics | en |
tub.subject.msc2000 | 49J20 Optimal control problems involving partial differential equations | en |
Files
Original bundle
1 - 1 of 1
Loading…
- Name:
- Report-22-2005.pdf
- Size:
- 425.11 KB
- Format:
- Adobe Portable Document Format
- Description: