Lamé curve approximation for the assessment of the 3D temperature distribution in keyhole mode welding processes

dc.contributor.authorArtinov, Antoni
dc.contributor.authorKarkhin, Victor
dc.contributor.authorBakir, Nasim
dc.contributor.authorMeng, Xiangmeng
dc.contributor.authorBachmann, Marcel
dc.contributor.authorGumenyuk, Andrey
dc.contributor.authorRethmeier, Michael
dc.date.accessioned2020-06-03T15:38:41Z
dc.date.available2020-06-03T15:38:41Z
dc.date.issued2020-05-04
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in A. Artinov et al., Journal of Laser Applications 32, 022042 (2020) and may be found at https://doi.org/10.2351/7.0000076.en
dc.description.abstractA novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby, the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection, and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes' temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g., the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments.en
dc.description.sponsorshipDFG, 411393804, Experimentelle und numerische Untersuchung der Entstehungsmechanismen des Bulgings und dessen Einfluss auf die Bildung von Mittelrippendefekten beim Hochleistungslaserstrahlschweißen niedriglegierter Stähle hoher Blechdickeen
dc.description.sponsorshipBMWi, 19582N, Investigation of the influence of the restraint conditions on hot cracking in laser and laser-hybrid welding of thick structure steelsen
dc.identifier.eissn1938-1387
dc.identifier.issn1042-346X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11259
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10147
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc600 Technik, Technologiede
dc.subject.ddc530 Physikde
dc.subject.otherLamé curves approximationen
dc.subject.otherequivalent heat sourceen
dc.subject.otherthermal cyclesen
dc.subject.othernumerical modelingen
dc.subject.otherkeyhole mode weldingen
dc.titleLamé curve approximation for the assessment of the 3D temperature distribution in keyhole mode welding processesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber22042
dcterms.bibliographicCitation.doi10.2351/7.0000076
dcterms.bibliographicCitation.issue2
dcterms.bibliographicCitation.journaltitleJournal of Laser Applicationsen
dcterms.bibliographicCitation.originalpublishernameLaser Institute of America (LIA), American Institute of Physics (AIP)en
dcterms.bibliographicCitation.originalpublisherplaceOrlandoen
dcterms.bibliographicCitation.volume32
tub.accessrights.dnbdomain*
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Werkzeugmaschinen und Fabrikbetrieb::FG Fügetechnikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Fügetechnikde
tub.affiliation.instituteInst. Werkzeugmaschinen und Fabrikbetriebde
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
artinov_etal_2020.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format

Collections