On the electrocatalytical oxygen reduction reaction activity and stability of quaternary RhMo-doped PtNi/C octahedral nanocrystals

dc.contributor.authorHornberger, Elisabeth
dc.contributor.authorKlingenhof, Malte
dc.contributor.authorPolani, Shlomi
dc.contributor.authorPaciok, Paul
dc.contributor.authorKormányos, Attila
dc.contributor.authorChattot, Raphaël
dc.contributor.authorMacArthur, Katherine E.
dc.contributor.authorWang, Xingli
dc.contributor.authorPan, Lujin
dc.contributor.authorDrnec, Jakub
dc.contributor.authorCherevko, Serhiy
dc.contributor.authorHeggen, Marc
dc.contributor.authorDunin-Borkowski, Rafal E.
dc.contributor.authorStrasser, Peter
dc.date.accessioned2022-10-12T12:18:37Z
dc.date.available2022-10-12T12:18:37Z
dc.date.issued2022-08-02
dc.description.abstractRecently proposed bimetallic octahedral Pt–Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers.en
dc.description.sponsorshipBMBF, 03XP0251, KorrZellKat - Korrosionsresistente Katalysator- und Trägermaterialien für Niedertemperatur PEM Brennstoffzellkathoden
dc.description.sponsorshipBMWK, 03ETB027H, Verbundprojekt: POREForm- Entwicklung von porenoptimierten Katalysatoren und Katalysatorschichten für Hochleistungs-Polymer-Elektrolyt-Membran-Brennstoffzellen;TV: HTEM-Charakterisierung der Porenstruktur und Katalysator-Ionomer Grenzfläche
dc.identifier.eissn2041-6539
dc.identifier.issn2041-6520
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17573
dc.identifier.urihttps://doi.org/10.14279/depositonce-16354
dc.language.isoen
dc.relation.ispartof10.14279/depositonce-16177
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.othernanocrystalsen
dc.subject.otherelectrocatalystsen
dc.subject.otherORRen
dc.subject.otherPEMFCen
dc.subject.otherproton exchange membrane fuel cellen
dc.titleOn the electrocatalytical oxygen reduction reaction activity and stability of quaternary RhMo-doped PtNi/C octahedral nanocrystalsen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.doi10.1039/D2SC01585D
dcterms.bibliographicCitation.issue32
dcterms.bibliographicCitation.journaltitleChemical Science
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistry
dcterms.bibliographicCitation.originalpublisherplaceCambridge
dcterms.bibliographicCitation.pageend9304
dcterms.bibliographicCitation.pagestart9295
dcterms.bibliographicCitation.volume13
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemie
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Hornberger_etal_electrocatalytical_2022.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.23 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections