Surface chemistry and stability of metastable corundum-type In2O3

dc.contributor.authorKöck, Eva-Maria
dc.contributor.authorKogler, Michaela
dc.contributor.authorZhuo, Chen
dc.contributor.authorSchlicker, Lukas
dc.contributor.authorBekheet, Maged F.
dc.contributor.authorDoran, Andrew
dc.contributor.authorGurlo, Aleksander
dc.contributor.authorPenner, Simon
dc.date.accessioned2018-04-19T08:47:55Z
dc.date.available2018-04-19T08:47:55Z
dc.date.issued2017
dc.description.abstractTo account for the explanation of an eventual sensing and catalytic behavior of rhombohedral In2O3 (rh-In2O3) and the dependence of the metastability of the latter on gas atmospheres, in situ electrochemical impedance spectroscopic (EIS), Fourier-transform infrared spectroscopic (FT-IR), in situ X-ray diffraction and in situ thermogravimetric analyses in inert (helium) and reactive gases (hydrogen, carbon monoxide and carbon dioxide) have been conducted to link the gas-dependent electrical conductivity features and the surface chemical properties to its metastability towards cubic In2O3. In particular, for highly reducible oxides such as In2O3, for which not only the formation of oxygen vacancies, but deep reduction to the metallic state (i.e. metallic indium) also has to be taken into account, this approach is imperative. Temperature-dependent impedance features are strongly dependent on the respective gas composition and are assigned to distinct changes in either surface adsorbates or free charge carrier absorbance, allowing for differentiating and distinguishing between bulk reduction-related features from those directly arising from surface chemical alterations. For the measurements in an inert gas atmosphere, this analysis specifically also included monitoring the fate of differently bonded, and hence, differently reactive, hydroxyl groups. Reduction of rh-In2O3 proceeds to a large extent indirectly via rh-In2O3 → c-In2O3 → In metal. As deduced from the CO and CO2 adsorption experiments, rhombohedral In2O3 exhibits predominantly Lewis acidic surface sites. The basic character is less pronounced, directly explaining the previously observed high (inverse) water–gas shift activity and the low CO2 selectivity in methanol steam reforming.en
dc.description.sponsorshipDFG, SPP 1415, Kristalline Nichtgleichgewichtsphasen - Präparation, Charakterisierung und in situ-Untersuchung der Bildungsmechanismenen
dc.identifier.eissn1463-9084
dc.identifier.issn1463-9076
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/7646
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6836
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaften
dc.titleSurface chemistry and stability of metastable corundum-type In2O3en
dc.typeArticle
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/c7cp03632a
dcterms.bibliographicCitation.issue29
dcterms.bibliographicCitation.journaltitlePhysical Chemistry Chemical Physicsen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistry (RSC)
dcterms.bibliographicCitation.originalpublisherplaceCambridge
dcterms.bibliographicCitation.pageend19419
dcterms.bibliographicCitation.pagestart19407
dcterms.bibliographicCitation.volume19
tub.accessrights.dnbfree
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Werkstoffwissenschaften und -technologien::FG Keramische Werkstoffede
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Keramische Werkstoffede
tub.affiliation.instituteInst. Werkstoffwissenschaften und -technologiende
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
c7cp03632a.pdf
Size:
5.02 MB
Format:
Adobe Portable Document Format

Collections