Estimating integrated water vapor trends from VLBI, GPS,and numerical weather models: sensitivity totropospheric parameterization

dc.contributor.authorBalidakis, Kyriakos
dc.contributor.authorNilsson, Tobias
dc.contributor.authorZus, Florian
dc.contributor.authorGlaser, Susanne
dc.contributor.authorHeinkelmann, Robert
dc.contributor.authorDeng, Zhiguo
dc.contributor.authorSchuh, Harald
dc.date.accessioned2020-01-23T12:17:24Z
dc.date.available2020-01-23T12:17:24Z
dc.date.issued2018-06-20
dc.description©2018. American Geophysical Unionen
dc.description.abstractIn this study, we estimate integrated water vapor (IWV) trends from very long baseline interferometry (VLBI) and global navigation satellite systems (GNSS) data analysis, as well as from numerical weather models (NWMs). We study the impact of modeling and parameterization of the tropospheric delay from VLBI on IWV trends. We address the impact of the meteorological data source utilized to model the hydrostatic delay and the thermal deformation of antennas, as well as the mapping functions employed to project zenith delays to arbitrary directions. To do so, we derive a new mapping function, called Potsdam mapping functions based on NWM data and a new empirical model, GFZ‐PT. GFZ‐PT differs from previous realizations as it describes diurnal and subdiurnal in addition to long‐wavelength variations, it provides harmonic functions of ray tracing‐derived gradients, and it features robustly estimated rates. We find that alternating the mapping functions in VLBI data analysis yields no statistically significant differences in the IWV rates, whereas alternating the meteorological data source distorts the trends significantly. Moreover, we explore methods to extract IWV given a NWM. The rigorously estimated IWV rates from the different VLBI setups, GNSS, and ERA‐Interim are intercompared, and a good agreement is found. We find a quite good agreement comparing ERA‐Interim to VLBI and GNSS, separately, at the level of 75%.en
dc.description.sponsorshipDFG, 255986470, GGOS-SIM-2: Simulation des "Global Geodetic Observing System"en
dc.identifier.eissn2169-8996
dc.identifier.issn2169-897X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10617
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9544
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc550 Geowissenschaftende
dc.subject.otherintegrated water vaporen
dc.subject.otherhomogenizationen
dc.subject.othermapping functionsen
dc.subject.otherempirical meteorological modelen
dc.subject.otherVLBIen
dc.titleEstimating integrated water vapor trends from VLBI, GPS,and numerical weather models: sensitivity totropospheric parameterizationen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1029/2017JD028049en
dcterms.bibliographicCitation.issue12en
dcterms.bibliographicCitation.journaltitleJournal of geophysical research : Atmospheresen
dcterms.bibliographicCitation.originalpublishernameWiley ; American Geophysical Union (AGU)en
dcterms.bibliographicCitation.originalpublisherplaceHoboken, NJen
dcterms.bibliographicCitation.pageend6372en
dcterms.bibliographicCitation.pagestart6356en
dcterms.bibliographicCitation.volume123en
tub.accessrights.dnbfreeen
tub.affiliationFak. 6 Planen Bauen Umwelt>Inst. Geodäsie und Geoinformationstechnik>FG Satellitengeodäsiede
tub.affiliation.facultyFak. 6 Planen Bauen Umweltde
tub.affiliation.groupFG Satellitengeodäsiede
tub.affiliation.instituteInst. Geodäsie und Geoinformationstechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Balidakis_et_al-2018.pdf
Size:
6.72 MB
Format:
Adobe Portable Document Format
Description:
Collections