Evolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5‐Hydroxymethylfurfural

dc.contributor.authorHausmann, J. Niklas
dc.contributor.authorBeltrán‐Suito, Rodrigo
dc.contributor.authorMebs, Stefan
dc.contributor.authorHlukhyy, Viktor
dc.contributor.authorFässler, Thomas F.
dc.contributor.authorDau, Holger
dc.contributor.authorDriess, Matthias
dc.contributor.authorMenezes, Prashanth W.
dc.date.accessioned2021-09-17T07:19:03Z
dc.date.available2021-09-17T07:19:03Z
dc.date.issued2021-05-28
dc.date.updated2021-09-13T08:31:47Z
dc.description.abstractIn a green energy economy, electrocatalysis is essential for chemical energy conversion and to produce value added chemicals from regenerative resources. To be widely applicable, an electrocatalyst should comprise the Earth's crust's most abundant elements. The most abundant 3d metal, iron, with its multiple accessible redox states has been manifold applied in chemocatalytic processes. However, due to the low conductivity of FeIIIOxHy phases, its applicability for targeted electrocatalytic oxidation reactions such as water oxidation is still limited. Herein, it is shown that iron incorporated in conductive intermetallic iron silicide (FeSi) can be employed to meet this challenge. In contrast to silicon‐poor iron–silicon alloys, intermetallic FeSi possesses an ordered structure with a peculiar bonding situation including covalent and ionic contributions together with conducting electrons. Using in situ X‐ray absorption and Raman spectroscopy, it could be demonstrated that, under the applied corrosive alkaline conditions, the FeSi partly forms a unique, oxidic iron(III) phase consisting of edge and corner sharing [FeO6] octahedra together with oxidized silicon species. This phase is capable of driving the oxyge evolution reaction (OER) at high efficiency under ambient and industrially relevant conditions (500 mA cm−2 at 1.50 ± 0.025 VRHE and 65 °C) and to selectively oxygenate 5‐hydroxymethylfurfural (HMF).en
dc.description.sponsorshipDFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"en
dc.description.sponsorshipBMBF, 05K19KE1, Operando Röntgenabsorptions-Spektroskopie (XANES und EXAFS) zur Verfolgung synchronisierter Reaktionsdynamiken in katalytischen Materialienen
dc.description.sponsorshipTU Berlin, Open-Access-Mittel – 2021
dc.identifier.eissn1521-4095
dc.identifier.issn0935-9648
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/13605
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-12392
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otheralkaline oxygen evolution reactionen
dc.subject.otherintermetallic compoundsen
dc.subject.otherironen
dc.subject.otherselective oxygenation of organicsen
dc.subject.othersiliconen
dc.subject.otherwater oxidationen
dc.titleEvolving Highly Active Oxidic Iron(III) Phase from Corrosion of Intermetallic Iron Silicide to Master Efficient Electrocatalytic Water Oxidation and Selective Oxygenation of 5‐Hydroxymethylfurfuralen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber2008823en
dcterms.bibliographicCitation.doi10.1002/adma.202008823en
dcterms.bibliographicCitation.issue27en
dcterms.bibliographicCitation.journaltitleAdvanced Materialsen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.volume33en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ADMA_ADMA202008823.pdf
Size:
3.89 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections