Compressible starting jet: pinch-off and vortex ring–trailing jet interaction

dc.contributor.authorPeña Fernández, Juan José
dc.contributor.authorSesterhenn, Jörn
dc.date.accessioned2019-02-11T17:21:07Z
dc.date.available2019-02-11T17:21:07Z
dc.date.issued2017
dc.descriptionDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.de
dc.descriptionThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.en
dc.description.abstractThe dominant feature of the compressible starting jet is the interaction between the emerging vortex ring and the trailing jet. There are two types of interaction: the shock–shear layer–vortex interaction and the shear layer–vortex interaction. The former is clearly not present in the incompressible case, since there are no shocks. The shear layer–vortex interaction has been reported in the literature in the incompressible case and it was found that compressibility reduces the critical Reynolds number for the interaction. Four governing parameters describe the compressible starting jet: the non-dimensional mass supply, the Reynolds number, the reservoir to unbounded chamber temperature ratio and the reservoir to unbounded chamber pressure ratio. The latter parameter does not exist in the incompressible case. For large Reynolds numbers, the vortex pinch-off takes place in a multiple way. We studied the compressible starting jet numerically and found that the interaction strongly links the vortex ring and the trailing jet. The shear layer–vortex interaction leads to a rapid breakdown of the head vortex ring when the flow impacted by the Kelvin–Helmholtz instabilities is ingested into the head vortex ring. The shock–shear layer–vortex interaction is similar to the noise generation mechanism of broadband shock noise in a continuously blowing jet and results in similar sound pressure amplitudes in the far field.en
dc.description.sponsorshipDFG, SFB 1029, TurbIn - Signifikante Wirkungsgradsteigerung durch gezielte, interagierende Verbrennungs- und Strömungsinstationaritäten in Gasturbinenen
dc.identifier.eissn1469-7645
dc.identifier.issn0022-1120
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/9098
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-8199
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde
dc.subject.othercompressible flowsen
dc.subject.otherjetsen
dc.subject.otherjet noiseen
dc.titleCompressible starting jet: pinch-off and vortex ring–trailing jet interactionen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1017/jfm.2017.128
dcterms.bibliographicCitation.journaltitleJournal of Fluid Mechanicsen
dcterms.bibliographicCitation.originalpublishernameCambridge University Pressen
dcterms.bibliographicCitation.pageend589
dcterms.bibliographicCitation.pagestart560
dcterms.bibliographicCitation.volume817
tub.accessrights.dnbdomain
tub.affiliationVerbundforschung::Sonderforschungsbereiche (SFB)::SFB 1029 - TurbInde
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Strömungsmechanik und Technische Akustik (ISTA)::FG Numerische Fluiddynamikde
tub.affiliation.facultyVerbundforschungde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupSFB 1029 - TurbInde
tub.affiliation.groupFG Numerische Fluiddynamikde
tub.affiliation.instituteSonderforschungsbereiche (SFB)de
tub.affiliation.instituteInst. Strömungsmechanik und Technische Akustik (ISTA)de
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
pena-fernandez_sesterhenn_2017.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format

Collections