From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic acid

dc.contributor.authorTran Ngoc Huan
dc.contributor.authorAndreiadis, Eugen S.
dc.contributor.authorHeidkamp, Jonathan
dc.contributor.authorSimon, Philippe
dc.contributor.authorDerat, Etienne
dc.contributor.authorCobo, Saioa
dc.contributor.authorRoyal, Guy
dc.contributor.authorBergmann, Arno
dc.contributor.authorStrasser, Peter
dc.contributor.authorDau, Holger
dc.contributor.authorArtero, Vincent
dc.contributor.authorFontecave, Marc
dc.date.accessioned2017-10-25T06:29:05Z
dc.date.available2017-10-25T06:29:05Z
dc.date.issued2015
dc.descriptionDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.de
dc.descriptionThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.en
dc.description.abstractThe development of new energy storage technologies is central to solving the challenges facing the widespread use of renewable energies. An option is the reduction of carbon dioxide (CO2) into carbon-based products which can be achieved within an electrochemical cell. Future developments of such processes depend on the availability of cheap and selective catalysts at the electrode. Here we show that a unique well-characterized active electrode material can be simply prepared via electrodeposition from a molecular copper complex precursor. The best performances, namely activity (150 mV onset overpotential and 1 mA cm (2) current density at 540 mV overpotential), selectivity (90% faradaic yield) and stability for electrocatalytic reduction of CO2 into formic acid in DMF/H2O ( 97 : 3 v/v) have been obtained with the [Cu(cyclam)](ClO4)(2) complex (cyclam = 1,4,8,11-tetraazacyclotetradecane) as the precursor. Remarkably the organic ligand of the Cu precursor remains part of the composite material and the electrocatalytic activity is greatly dependent on the nature of that organic component.en
dc.description.sponsorshipDFG, EXC 314, Unifying Concepts in Catalysisen
dc.identifier.eissn2050-7496
dc.identifier.issn2050-7488
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/6974
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6313
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.ddc530 Physikde
dc.titleFrom molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic aciden
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/c4ta07022d
dcterms.bibliographicCitation.issue7
dcterms.bibliographicCitation.journaltitleJournal of materials chemistry : A, Materials for energy and sustainabilityen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistryde
dcterms.bibliographicCitation.originalpublisherplaceCambridgede
dcterms.bibliographicCitation.pageend3907
dcterms.bibliographicCitation.pagestart3901
dcterms.bibliographicCitation.volume3
tub.accessrights.dnbdomain
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Technische Chemiede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Technische Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
c4ta07022d.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format

Collections