High-frequency earth rotation variations deduced from altimetry-based ocean tides

dc.contributor.authorMadzak, Matthis
dc.contributor.authorSchindelegger, Michael
dc.contributor.authorBöhm, Johannes
dc.contributor.authorBosch, Wolfgang
dc.contributor.authorHagedoorn, Jan
dc.date.accessioned2017-08-29T07:24:33Z
dc.date.available2017-08-29T07:24:33Z
dc.date.issued2016
dc.description.abstractA model of diurnal and semi-diurnal variations in Earth rotation parameters (ERP) is constructed based on altimetry-measured tidal heights from a multi-mission empirical ocean tide solution. Barotropic currents contributing to relative angular momentum changes are estimated for nine major tides in a global inversion algorithm that solves the two-dimensional momentum equations on a regular 0.5^\circ grid with a heavily weighted continuity constraint. The influence of 19 minor tides is accounted for by linear admittance interpolation of ocean tidal angular momentum, although the assumption of smooth admittance variations with frequency appears to be a doubtful concept for semi-diurnal mass terms in particular. A validation of the newly derived model based on post-fit corrections to polar motion and universal time (\Delta UT1) from the analysis of Very Long Baseline Interferometry (VLBI) observations shows a variance reduction for semi-diurnal \Delta UT1 residuals that is significant at the 0.05 level with respect to the conventional ERP model. Improvements are also evident for the explicitly modeled K_1, Q_1, and K_2 tides in individual ERP components, but large residuals of more than 15 \upmu as remain at the principal lunar frequencies of O_1 and M_2. We attribute these shortcomings to uncertainties in the inverted relative angular momentum changes and, to a minor extent, to violation of mass conservation in the empirical ocean tide solution. Further dedicated hydrodynamic modeling efforts of these anomalous constituents are required to meet the accuracy standards of modern space geodesy.en
dc.identifier.eissn1432-1394
dc.identifier.issn0949-7714
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/6666
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6107
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550 Geowissenschaften
dc.subject.otherearth rotation variationsen
dc.subject.otherempirical ocean tidesen
dc.subject.othertidal currentsen
dc.subject.otherangular momentum changesen
dc.subject.otherVLBIen
dc.titleHigh-frequency earth rotation variations deduced from altimetry-based ocean tidesen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.doi10.1007/s00190-016-0919-4
dcterms.bibliographicCitation.issue11
dcterms.bibliographicCitation.journaltitleJournal of geodesy
dcterms.bibliographicCitation.originalpublishernameSpringer
dcterms.bibliographicCitation.originalpublisherplaceBerlin, Heidelberg
dcterms.bibliographicCitation.pageend1253
dcterms.bibliographicCitation.pagestart1237
dcterms.bibliographicCitation.volume90
tub.accessrights.dnbfree
tub.affiliationFak. 6 Planen Bauen Umwelt::Inst. Geodäsie und Geoinformationstechnik::FG Satellitengeodäsiede
tub.affiliation.facultyFak. 6 Planen Bauen Umweltde
tub.affiliation.groupFG Satellitengeodäsiede
tub.affiliation.instituteInst. Geodäsie und Geoinformationstechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
10.1007_s00190-016-0919-4.pdf
Size:
3.6 MB
Format:
Adobe Portable Document Format

Collections