Neural network computing using a large-area VCSEL

dc.contributor.authorPorte, Xavier
dc.contributor.authorSkalli, Anas
dc.contributor.authorHaghighi, Nasibeh
dc.contributor.authorReitzenstein, Stephan
dc.contributor.authorLott, James A.
dc.contributor.authorBrunner, Daniel
dc.date.accessioned2022-05-23T11:29:01Z
dc.date.available2022-05-23T11:29:01Z
dc.date.issued2021-11-26
dc.description.abstractWe implement a fully parallel photonic neural network based on the spatially distributed modes of a large-area vertical-cavity surface-emitting laser. All photonic connections are realized in hardware and the system is capable of autonomous operation.en
dc.identifier.isbn978-1-6654-4133-9
dc.identifier.issn1947-6981
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/16981
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-15760
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.otherneural networksen
dc.subject.otherlaser modesen
dc.subject.otherhardwareen
dc.subject.othervertical cavity surface emitting lasersen
dc.subject.otherphotonicsen
dc.titleNeural network computing using a large-area VCSELen
dc.typeConference Objecten
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1109/ISLC51662.2021.9615664en
dcterms.bibliographicCitation.originalpublishernameIEEEen
dcterms.bibliographicCitation.originalpublisherplaceWinnipeg, Man.en
dcterms.bibliographicCitation.proceedingstitle2021 27th International Semiconductor Laser Conference (ISLC)en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Festkörperphysik>AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Porte_etal_Neural_2021.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format
Description:
Collections