Drug Delivery From Polymer-Based Nanopharmaceuticals—An Experimental Study Complemented by Simulations of Selected Diffusion Processes

dc.contributor.authorMacha, Innocent J.
dc.contributor.authorBen-Nissan, Besim
dc.contributor.authorVilchevskaya, Elena N.
dc.contributor.authorMorozova, Anna S.
dc.contributor.authorAbali, Bilen Emek
dc.contributor.authorMüller, Wolfgang H.
dc.contributor.authorRickert, Wilhelm
dc.date.accessioned2019-04-11T09:21:21Z
dc.date.available2019-04-11T09:21:21Z
dc.date.issued2019-03-08
dc.description.abstractThe success of medical therapy depends on the correct amount and the appropriate delivery of the required drugs for treatment. By using biodegradable polymers a drug delivery over a time span of weeks or even months is made possible. This opens up a variety of strategies for better medication. The drug is embedded in a biodegradable polymer (the “carrier”) and injected in a particular position of the human body. As a consequence of the interplay between the diffusion process and the degrading polymer the drug is released in a controlled manner. In this work we study the controlled release of medication experimentally by measuring the delivered amount of drug within a cylindrical shell over a long time interval into the body fluid. Moreover, a simple continuum model of the Fickean type is initially proposed and solved in closed-form. It is used for simulating some of the observed release processes for this type of carrier and takes the geometry of the drug container explicitly into account. By comparing the measurement data and the model predictions diffusion coefficients are obtained. It turns out that within this simple model the coefficients change over time. This contradicts the idea that diffusion coefficients are constants independent of the considered geometry. The model is therefore extended by taking an additional absorption term into account leading to a concentration dependent diffusion coefficient. This could now be used for further predictions of drug release in carriers of different shape. For a better understanding of the complex diffusion and degradation phenomena the underlying physics is discussed in detail and even more sophisticated models involving different degradation and mass transport phenomena are proposed for future work and study.en
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berlinen
dc.identifier.eissn2296-4185
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/9312
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-8385
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.othergentamicinen
dc.subject.otherbiphosphonateen
dc.subject.otherpolylacetic aciden
dc.subject.otherdiffusion coefficienten
dc.subject.othermodelingen
dc.titleDrug Delivery From Polymer-Based Nanopharmaceuticals—An Experimental Study Complemented by Simulations of Selected Diffusion Processesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber37en
dcterms.bibliographicCitation.doi10.3389/fbioe.2019.00037en
dcterms.bibliographicCitation.journaltitleFrontiers in Bioengineering and Biotechnologyen
dcterms.bibliographicCitation.originalpublishernameFrontiers Mediaen
dcterms.bibliographicCitation.originalpublisherplaceLausanneen
dcterms.bibliographicCitation.volume7en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme>Inst. Mechanik>FG Kontinuumsmechanik und Materialtheoriede
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Kontinuumsmechanik und Materialtheoriede
tub.affiliation.instituteInst. Mechanikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
fbioe-07-00037.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Description:
Collections