Linear algebra properties of dissipative Hamiltonian descriptor systems

dc.contributor.authorMehl, Christian
dc.contributor.authorMehrmann, Volker
dc.contributor.authorWojtylak, Michal
dc.date.accessioned2021-12-17T10:15:43Z
dc.date.available2021-12-17T10:15:43Z
dc.date.issued2018-01-06
dc.description.abstractA wide class of matrix pencils connected with dissipative Hamiltonian descriptor systems is investigated. In particular, the following properties are shown: all eigenvalues are in the closed left half plane, the nonzero finite eigenvalues on the imaginary axis are semisimple, the index is at most two, and there are restrictions for the possible left and right minimal indices. For the case that the eigenvalue zero is not semisimple, a structure-preserving method is presented that perturbs the given system into a Lyapunov stable system.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15911
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14684
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherport Hamiltonian systemen
dc.subject.otherdescriptor systemen
dc.subject.otherdissipative Hamiltonian systemen
dc.subject.othermatrix pencilen
dc.subject.othersingular pencilen
dc.subject.otherKronecker canonical formen
dc.subject.otherLyapunov stabilityen
dc.titleLinear algebra properties of dissipative Hamiltonian descriptor systemsen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2018, 01en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200015A18 Eigenvalues, singular values, and eigenvectorsen
tub.subject.msc200015A21 Canonical forms, reductions, classificationen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Preprint-01-2018.pdf
Size:
425.74 KB
Format:
Adobe Portable Document Format
Description:
Collections