The Development of an Effective Bacterial Single-Cell Lysis Method Suitable for Whole Genome Amplification in Microfluidic Platforms

dc.contributor.authorLiu, Yuguang
dc.contributor.authorSchulze-Makuch, Dirk
dc.contributor.authorDe Vera, Jean-Pierre
dc.contributor.authorCockell, Charles
dc.contributor.authorLeya, Thomas
dc.contributor.authorBaquƩ, Mickael
dc.contributor.authorWalther-Antonio, Marina
dc.date.accessioned2019-08-29T16:19:16Z
dc.date.available2019-08-29T16:19:16Z
dc.date.issued2018-07-25
dc.date.updated2019-08-01T01:54:42Z
dc.description.abstractSingle-cell sequencing is a powerful technology that provides the capability of analyzing a single cell within a population. This technology is mostly coupled with microfluidic systems for controlled cell manipulation and precise fluid handling to shed light on the genomes of a wide range of cells. So far, single-cell sequencing has been focused mostly on human cells due to the ease of lysing the cells for genome amplification. The major challenges that bacterial species pose to genome amplification from single cells include the rigid bacterial cell walls and the need for an effective lysis protocol compatible with microfluidic platforms. In this work, we present a lysis protocol that can be used to extract genomic DNA from both gram-positive and gram-negative species without interfering with the amplification chemistry. Corynebacterium glutamicum was chosen as a typical gram-positive model and Nostoc sp. as a gram-negative model due to major challenges reported in previous studies. Our protocol is based on thermal and chemical lysis. We consider 80% of single-cell replicates that lead to >5 ng DNA after amplification as successful attempts. The protocol was directly applied to Gloeocapsa sp. and the single cells of the eukaryotic Sphaerocystis sp. and achieved a 100% success rate.en
dc.description.sponsorshipEC/FP7/339231/Habitability of Martian Environments: Exploring the Physiological and Environmental Limits of Life/HOMEen
dc.identifier.eissn2072-666X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/9929
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-8939
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc570 Biowissenschaften; Biologiede
dc.subject.otherbacteria lysis protocolen
dc.subject.othermicroalgae lysisen
dc.subject.othersingle-cell multiple displacement amplificationen
dc.titleThe Development of an Effective Bacterial Single-Cell Lysis Method Suitable for Whole Genome Amplification in Microfluidic Platformsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber367en
dcterms.bibliographicCitation.doi10.3390/mi9080367en
dcterms.bibliographicCitation.issue8en
dcterms.bibliographicCitation.journaltitleMicromachinesen
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume9en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Zentrum fĆ¼r Astronomie und Astrophysikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteZentrum fĆ¼r Astronomie und Astrophysikde
tub.publisher.universityorinstitutionTechnische UniversitƤt Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loadingā€¦
Thumbnail Image
Name:
micromachines-09-00367-v2.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections