Comparative study of two dynamics-model-based estimation algorithms for distributed drive electric vehicles

dc.contributor.authorZhang, Xudong
dc.contributor.authorGöhlich, Dietmar
dc.contributor.authorFu, Chenrui
dc.date.accessioned2017-09-06T08:39:31Z
dc.date.available2017-09-06T08:39:31Z
dc.date.issued2017
dc.description.abstractThe effect of vehicle active safety systems is subject to the accurate knowledge of vehicle states. Therefore, it is of great importance to develop a precise and robust estimation approach so as to deal with nonlinear vehicle dynamics systems. In this paper, a planar vehicle model with a simplified tire model is established first. Two advanced model-based estimation algorithms, an unscented Kalman filter and a moving horizon estimation, are developed for distributed drive electric vehicles. Using the proposed algorithms, vehicle longitudinal velocity, lateral velocity, yaw rate as well as lateral tire forces are estimated based on information fusion of standard sensors in today’s typical vehicle and feedback signals from electric motors. Computer simulations are implemented in the environment of CarSim combined with Matlab/Simulink. The performance of both estimators regarding convergence, accuracy, and robustness against an incorrect initial estimate of longitudinal velocity is compared in detail. The comparison results demonstrate that both estimation approaches have favourable coincidence with the corresponding reference values, while the moving horizon estimation is more accurate and robust, and owns faster convergence.en
dc.description.sponsorshipDFG, 325093850, Open Access Publizieren 2017 - 2018 / Technische Universität Berlinde
dc.identifier.eissn2076-3417
dc.identifier.urihttp://depositonce.tu-berlin.de/handle/11303/6693
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6134
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitende
dc.subject.otherunscented Kalman filteren
dc.subject.othermoving horizon estimationen
dc.subject.othervehicle state estimationen
dc.subject.otherdistributed drive electric vehicleen
dc.titleComparative study of two dynamics-model-based estimation algorithms for distributed drive electric vehiclesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber898en
dcterms.bibliographicCitation.doi10.3390/app7090898en
dcterms.bibliographicCitation.issue7en
dcterms.bibliographicCitation.journaltitleApplied Sciencesen
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume9en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme>Inst. Maschinenkonstruktion und Systemtechnik>FG Methoden der Produktentwicklung und Mechatronikde
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Methoden der Produktentwicklung und Mechatronikde
tub.affiliation.instituteInst. Maschinenkonstruktion und Systemtechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
2017_zhang_et-al.pdf
Size:
10.87 MB
Format:
Adobe Portable Document Format
Description:
Collections