Thumbnail Image

Reference system origin and scale realization within the future GNSS constellation “Kepler”

Glaser, Susanne; Michalak, Grzegorz; Männel, Benjamin; König, Rolf; Neumayer, Karl Hans; Schuh, Harald

FG Satellitengeodäsie

Currently, Global Navigation Satellite Systems (GNSS) do not contribute to the realization of origin and scale of combined global terrestrial reference frame (TRF) solutions due to present system design limitations. The future Galileo-like medium Earth orbit (MEO) constellation, called “Kepler”, proposed by the German Aerospace Center DLR, is characterized by a low Earth orbit (LEO) segment and the innovative key features of optical inter-satellite links (ISL) delivering highly precise range measurements and of optical frequency references enabling a perfect time synchronization within the complete constellation. In this study, the potential improvements of the Kepler constellation on the TRF origin and scale are assessed by simulations. The fully developed Kepler system allows significant improvements of the geocenter estimates (realized TRF origin in long-term). In particular, we find improvements by factors of 43 for the Z and of 8 for the X and Y component w. r. t. a contemporary MEO-only constellation. Furthermore, the Kepler constellation increases the reliability due to a complete de-correlation of the geocenter coordinates and the orbit parameters related to the solar radiation pressure modeling (SRP). However, biases in SRP modeling cause biased geocenter estimates and the ISL of Kepler can only partly compensate this effect. The realized scale enabling all Kepler features improves by 34% w. r. t. MEO-only. The dependency of the estimated satellite antenna phase center offsets (PCOs) upon the underlying TRF impedes a scale realization by GNSS. In order to realize the network scale with 1 mm accuracy, the PCOs have to be known within 2 cm for the MEO and 4 mm for the LEO satellites. Independently, the scale can be realized by estimating the MEO PCOs and by simultaneously fixing the LEO PCOs. This requires very accurate LEO PCOs; the simulations suggest them to be smaller than 1 mm in order to keep scale changes below 1 mm.