Multi-Scale Studies of 3D Printed Mn−Na−W/SiO2 Catalyst for Oxidative Coupling of Methane

dc.contributor.authorKarsten, Tim
dc.contributor.authorMiddelkoop, Vesna
dc.contributor.authorMatras, Dorota
dc.contributor.authorVamvakeros, Antonis
dc.contributor.authorPoulston, Stephen
dc.contributor.authorGrosjean, Nicolas
dc.contributor.authorRollins, Benjamin
dc.contributor.authorGallucci, Fausto
dc.contributor.authorGodini, Hamid R.
dc.contributor.authorJacques, Simon D. M.
dc.contributor.authorBeale, Andrew M.
dc.contributor.authorRepke, Jens-Uwe
dc.date.accessioned2021-03-10T09:20:09Z
dc.date.available2021-03-10T09:20:09Z
dc.date.issued2021-02-24
dc.date.updated2021-03-03T04:15:56Z
dc.description.abstractThis work presents multi-scale approaches to investigate 3D printed structured Mn–Na–W/SiO2 catalysts used for the oxidative coupling of methane (OCM) reaction. The performance of the 3D printed catalysts has been compared to their conventional analogues, packed beds of pellets and powder. The physicochemical properties of the 3D printed catalysts were investigated using scanning electron microscopy, nitrogen adsorption and X-ray diffraction (XRD). Performance and durability tests of the 3D printed catalysts were conducted in the laboratory and in a miniplant under real reaction conditions. In addition, synchrotron-based X-ray diffraction computed tomography technique (XRD-CT) was employed to obtain cross sectional maps at three different positions selected within the 3D printed catalyst body during the OCM reaction. The maps revealed the evolution of catalyst active phases and silica support on spatial and temporal scales within the interiors of the 3D printed catalyst under operating conditions. These results were accompanied with SEM-EDS analysis that indicated a homogeneous distribution of the active catalyst particles across the silica support.en
dc.description.sponsorshipEC/H2020/679933/EU/MEthane activation via integrated MEmbrane REactors/MEMEREen
dc.description.sponsorshipDFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berlinde
dc.identifier.eissn2073-4344
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12778
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11578
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otheroxidative coupling of methaneen
dc.subject.otherfixed bed reactorsen
dc.subject.other3D printed catalystsen
dc.subject.otherX-ray diffraction computed tomographyen
dc.subject.otheroperando chemical imagingen
dc.titleMulti-Scale Studies of 3D Printed Mn−Na−W/SiO2 Catalyst for Oxidative Coupling of Methaneen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber290en
dcterms.bibliographicCitation.doi10.3390/catal11030290en
dcterms.bibliographicCitation.issue3en
dcterms.bibliographicCitation.journaltitleCatalystsen
dcterms.bibliographicCitation.originalpublishernameMDPIen
dcterms.bibliographicCitation.originalpublisherplaceBaselen
dcterms.bibliographicCitation.volume11en
tub.accessrights.dnbfreeen
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Prozess- und Verfahrenstechnik::FG Dynamik und Betrieb technischer Anlagende
tub.affiliation.facultyFak. 3 Prozesswissenschaftende
tub.affiliation.groupFG Dynamik und Betrieb technischer Anlagende
tub.affiliation.instituteInst. Prozess- und Verfahrenstechnikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
catalysts-11-00290-v2.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections