Local Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metric
dc.contributor.author | Binder, Thomas | |
dc.date.accessioned | 2021-12-17T10:13:55Z | |
dc.date.available | 2021-12-17T10:13:55Z | |
dc.date.issued | 1998-11-01 | |
dc.description.abstract | We examine the centroaffine geometry of Tchebychev surfaces. By choosing local parameters adapted to the problem, it is possible to understand the integrability conditions. We introduce regular and singular surfaces and prove an existence theorem for regular ones. We will show that there are no Tchebychev surfaces with nonzero constant curvature metric, thus reducing the problem to $K=0$, which has already been solved. | en |
dc.identifier.issn | 2197-8085 | |
dc.identifier.uri | https://depositonce.tu-berlin.de/handle/11303/15860 | |
dc.identifier.uri | http://dx.doi.org/10.14279/depositonce-14633 | |
dc.language.iso | en | en |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | en |
dc.subject.ddc | 510 Mathematik | en |
dc.subject.other | centroaffine differential geometry | en |
dc.subject.other | Tchebychev surfaces | en |
dc.title | Local Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metric | en |
dc.type | Research Paper | en |
dc.type.version | submittedVersion | en |
tub.accessrights.dnb | free | en |
tub.affiliation | Fak. 2 Mathematik und Naturwissenschaften::Inst. Mathematik | de |
tub.affiliation.faculty | Fak. 2 Mathematik und Naturwissenschaften | de |
tub.affiliation.institute | Inst. Mathematik | de |
tub.publisher.universityorinstitution | Technische Universität Berlin | en |
tub.series.issuenumber | 1998, 581 | en |
tub.series.name | Preprint-Reihe des Instituts für Mathematik, Technische Universität Berlin | en |
tub.subject.msc2000 | 53A15 Affine differential geometry | en |
Files
Original bundle
1 - 1 of 1
Loading…
- Name:
- Preprint_581-1998.pdf
- Size:
- 4.75 MB
- Format:
- Adobe Portable Document Format
- Description: