Local Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metric

dc.contributor.authorBinder, Thomas
dc.date.accessioned2021-12-17T10:13:55Z
dc.date.available2021-12-17T10:13:55Z
dc.date.issued1998-11-01
dc.description.abstractWe examine the centroaffine geometry of Tchebychev surfaces. By choosing local parameters adapted to the problem, it is possible to understand the integrability conditions. We introduce regular and singular surfaces and prove an existence theorem for regular ones. We will show that there are no Tchebychev surfaces with nonzero constant curvature metric, thus reducing the problem to $K=0$, which has already been solved.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15860
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14633
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.othercentroaffine differential geometryen
dc.subject.otherTchebychev surfacesen
dc.titleLocal Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metricen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber1998, 581en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200053A15 Affine differential geometryen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Preprint_581-1998.pdf
Size:
4.75 MB
Format:
Adobe Portable Document Format
Description:
Collections