Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses

dc.contributor.authorSchlehahn, Alexander
dc.contributor.authorSchmidt, Ronny
dc.contributor.authorHopfmann, C.
dc.contributor.authorSchulze, Jan-Hindrik
dc.contributor.authorStrittmatter, André
dc.contributor.authorHeindel, Tobias
dc.contributor.authorGantz, Liron
dc.contributor.authorSchmidgall, Emma R.
dc.contributor.authorGershoni, David
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2020-04-23T08:49:28Z
dc.date.available2020-04-23T08:49:28Z
dc.date.issued2016-01-11
dc.descriptionThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 108, 021104 (2016) and may be found at https://doi.org/10.1063/1.4939658.en
dc.description.abstractWe report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.en
dc.description.sponsorshipBMBF, 03V0630, Entwicklung einer Halbleiterbasierten Einzelphotonenquelle für die Quanteninformationstechnologie (QSOURCE)en
dc.description.sponsorshipDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelementeen
dc.identifier.eissn1077-3118
dc.identifier.issn0003-6951
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11002
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9894
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc530 Physikde
dc.subject.othersingle photonen
dc.subject.otherquantum dotsen
dc.subject.othermicrolensen
dc.subject.otherlaseren
dc.subject.othermicrooptiocsen
dc.subject.otheroptical excitationen
dc.subject.otherelectrical gatingen
dc.titleGenerating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlensesen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber021104en
dcterms.bibliographicCitation.doi10.1063/1.4939658en
dcterms.bibliographicCitation.issue2en
dcterms.bibliographicCitation.journaltitleApplied Physics Lettersen
dcterms.bibliographicCitation.originalpublishernameAmerican Institute of Physics (AIP)en
dcterms.bibliographicCitation.originalpublisherplaceMelville, NYen
dcterms.bibliographicCitation.volume108en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften>Inst. Festkörperphysik>AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
Files
Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
schlehahn_etal_2016.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
Collections