Thumbnail Image

The potential of high-speed rail freight in Europe: how is a modal shift from road to rail possible for low-density high value cargo?

Boehm, Mathias; Arnz, Marlin; Winter, Joachim

Purpose: A fully electrified transport chain offers considerable potential for CO2 savings. In this paper, we examine the conditions necessary to introduce a fully electrified, large-scale, high-speed rail freight transport system in Europe in addition to high-speed passenger trains, aiming to shift goods transport from road to rail. We compare a novel high-speed rail freight concept with road-based lorry transport for low-density high value goods to estimate the potential for a modal shift from road to rail in 2030. Methods: To characterize the impacts of different framework conditions, a simulation tool was designed as a discrete choice model, based on random utility theory, with integrated performance calculation assessing the full multimodal transport chain regarding costs, emissions and time. It was applied to a European reference scenario based on forecast data for freight traffic in 2030. Results: We show that high-speed rail freight is about 70% more expensive than the conventional lorry but emits 80% less CO2 emissions for the baseline parameter setting. The expected mode share largely depends on the cargo’s value of time, while the implementation of a CO2-tax of 100 EUR/tCO2eq has an insignificant impact. The costs of handling goods and the infrastructure charges are highly influential variables. Conclusion: High-speed rail track access charges are a suitable political instrument to create a level playing field between the transport modes and internalize external costs of freight transport. With the given access charge structure, a reduction of the maximum operating speed to 160 km/h has a positive impact on the expected mode share of rail transport while it still reacts positively to a wide range of the cargo’s time sensitivity (compared to a maximum operating speed of 350 km/h). The flexibility of rail freight’s operating speed is important for an effective implementation. Further research should concentrate on time- and cost-efficient transhipment terminals as they have a significant impact on transport performance.
Published in: European Transport Research Review, 10.1186/s12544-020-00453-3, Springer Nature