Application of Population Balance Models in Particle-Stabilized Dispersions

dc.contributor.authorRöhl, Susanne
dc.contributor.authorHohl, Lena
dc.contributor.authorStock, Sebastian
dc.contributor.authorZhan, Manlin
dc.contributor.authorKopf, Tobias
dc.contributor.authorvon Klitzing, Regine
dc.contributor.authorKraume, Matthias
dc.date.accessioned2023-03-22T13:27:09Z
dc.date.available2023-03-22T13:27:09Z
dc.date.issued2023-02-11
dc.date.updated2023-03-08T02:37:28Z
dc.description.abstractIn this study, a first approach to model drop size distributions in agitated nanoparticle-stabilized liquid/liquid systems with population balance equations is presented. Established coalescence efficiency models fail to predict the effect of steric hindrance of nanoparticles at the liquid/liquid interface during the film drainage process. A novel modified coalescence efficiency is developed for the population balance framework based on the film drainage model. The elaborate submodel considers the desorption energy required to detach a particle from the interface, representing an energy barrier against coalescence. With an additional implemented function in the population balance framework, the interface coverage rate by particles is calculated for each time step. The transient change of the coverage degree of the phase interface by particles is thereby considered in the submodel. Validation of the modified submodel was performed with experimental data of agitated water-in-oil (w/o) dispersions, stabilized by well-defined spherical silica nanoparticles. The nanospheres with a size of 28 nm are positively charged and were hydrophobized by silanization with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammoniumchloride. This modeling approach is a first step toward predicting time-resolved dynamic drop size distributions of nanoparticle-stabilized liquid/liquid systems.
dc.identifier.eissn2079-4991
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/18375
dc.identifier.urihttps://doi.org/10.14279/depositonce-17184
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.subject.otherpickering emulsionen
dc.subject.otherstirred tanken
dc.subject.otherinterface coverage degreeen
dc.subject.othercoalescence efficiencyen
dc.titleApplication of Population Balance Models in Particle-Stabilized Dispersions
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber698
dcterms.bibliographicCitation.doi10.3390/nano13040698
dcterms.bibliographicCitation.issue4
dcterms.bibliographicCitation.journaltitleNanomaterials
dcterms.bibliographicCitation.originalpublishernameMDPI
dcterms.bibliographicCitation.originalpublisherplaceBasel
dcterms.bibliographicCitation.volume13
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Prozess- und Verfahrenstechnik::FG Verfahrenstechnik
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 2 of 2
Loading…
Thumbnail Image
Name:
nanomaterials-13-00698-v3.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
nanomaterials-13-00698-s001.zip
Size:
160.79 KB
Format:
ZIP archive format.
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections