Mechanism of the cooperative Si-H bond activation at Ru-S bonds

dc.contributor.authorStahl, Timo
dc.contributor.authorHrobárik, Peter
dc.contributor.authorKönigs, C. David F.
dc.contributor.authorOhki, Yasuhiro
dc.contributor.authorTatsumi, Kazuyuki
dc.contributor.authorKemper, Sebastian
dc.contributor.authorKaupp, Martin
dc.contributor.authorKlare, Hendrik F. T.
dc.contributor.authorOestreich, Martin
dc.date.accessioned2017-10-25T06:25:27Z
dc.date.available2017-10-25T06:25:27Z
dc.date.issued2015
dc.description.abstractThe nature of the hydrosilane activation mediated by ruthenium(II) thiolate complexes of type [(R3P)-Ru(SDmp)](+)[BAr4F]- is elucidated by an in-depth experimental and theoretical study. The combination of various ruthenium(II) thiolate complexes and tertiary hydrosilanes under variation of the phosphine ligand and the substitution pattern at the silicon atom is investigated, providing detailed insight into the activation mode. The mechanism of action involves reversible heterolytic splitting of the Si-H bond across the polar Ru-S bond without changing the oxidation state of the metal, generating a ruthenium(II) hydride and sulfur-stabilized silicon cations, i.e. metallasilylsulfonium ions. These stable yet highly reactive adducts, which serve as potent silicon electrophiles in various catalytic transformations, are fully characterized by systematic multinuclear NMR spectroscopy. The structural assignment is further verified by successful isolation and crystallographic characterization of these key intermediates. Quantum-chemical analyses of diverse bonding scenarios are in excellent agreement with the experimental findings. Moreover, the calculations reveal that formation of the hydrosilane adducts proceeds via barrierless electrophilic activation of the hydrosilane by sterically controlled eta(1) (end-on) or eta(2) (side-on) coordination of the Si-H bond to the Lewis acidic metal center, followed by heterolytic cleavage of the Si-H bond through a concerted four-membered transition state. The Ru-S bond remains virtually intact during the Si-H bond activation event and also preserves appreciable bonding character in the hydrosilane adducts. The overall Si-H bond activation process is exergonic with Delta G(r)(0) ranging from -20 to -40 kJ mol(-1), proceeding instantly already at low temperatures.en
dc.description.sponsorshipDFG, EXC 314, Unifying Concepts in Catalysisen
dc.description.sponsorshipDFG, GRK 1143: Komplexe chemische Systeme, Design, Entwicklung und Anwendungenen
dc.identifier.eissn2041-6539
dc.identifier.issn2041-6520
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/6950
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6289
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.titleMechanism of the cooperative Si-H bond activation at Ru-S bondsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/c5sc01035g
dcterms.bibliographicCitation.issue7
dcterms.bibliographicCitation.journaltitleChemical Scienceen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistryde
dcterms.bibliographicCitation.originalpublisherplaceCambridgede
dcterms.bibliographicCitation.pageend4334
dcterms.bibliographicCitation.pagestart4324
dcterms.bibliographicCitation.volume6
tub.accessrights.dnbfree
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Theoretische Chemie - Quantenchemiede
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Organische Chemie / Synthese und Katalysede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Theoretische Chemie - Quantenchemiede
tub.affiliation.groupFG Organische Chemie / Synthese und Katalysede
tub.affiliation.instituteInst. Chemiede
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
c5sc01035g.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format

Collections