Nanocatalysts Unravel the Selective State of Ag

dc.contributor.authorLamoth, Maximilian
dc.contributor.authorJones, Travis
dc.contributor.authorPlodinec, Milivoj
dc.contributor.authorMachoke, Albert
dc.contributor.authorWrabetz, Sabine
dc.contributor.authorKrämer, Michael
dc.contributor.authorKarpov, Andrey
dc.contributor.authorRosowski, Frank
dc.contributor.authorPiccinin, Simone
dc.contributor.authorSchlögl, Robert
dc.contributor.authorFrei, Elias
dc.date.accessioned2020-10-28T12:59:25Z
dc.date.available2020-10-28T12:59:25Z
dc.date.issued2020-05-07
dc.date.updated2020-10-26T13:30:10Z
dc.description.abstractIn the present work, we report on a comparative study of model catalysts during ethylene epoxidation reaction under industrially relevant conditions. The catalysts consist of Ag nanoparticles <6 nm and a reference sample ∼100 nm. Combining catalytic data with transmission electron microscopy, thermal desorption spectroscopy, and density functional theory allows us to show that catalytic performance is linked to the oxygen concentration in/on the Ag particles. Isotope experiments using 18O2 and C18O2 are conducted to gain insight into the nature and location of oxygen in/on the Ag nanoparticles. The oxygen species responsible for the CO2 formation and inhibition of the overall catalytic activity are identified, and the abundance of those species is shown to depend strongly on the pre‐treatment and reaction conditions, showing both are critical for effective oxygen management. By comparison with a conventional Ag/α‐Al2O3 catalyst, we demonstrate a low concentration of oxygen in/on Ag leads to the highest selectivity regardless of particle size. However, particle size dependent oxophilicity leads to significantly lower TOFs for the Ag nanoparticles. This study provides fundamental understanding of the performance of supported Ag particles in ethylene epoxidation and offers new strategies to improve performance under industrially relevant conditions.en
dc.identifier.eissn1867-3899
dc.identifier.issn1867-3880
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/11791
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-10683
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.otherAg−O interactionen
dc.subject.otherAg nanoparticlesen
dc.subject.otherethylene epoxidationen
dc.subject.otheroxophilicityen
dc.subject.othersupported Ag catalystsen
dc.subject.otherselective stateen
dc.titleNanocatalysts Unravel the Selective State of Agen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1002/cctc.202000035en
dcterms.bibliographicCitation.issue11en
dcterms.bibliographicCitation.journaltitleChemCatChemen
dcterms.bibliographicCitation.originalpublishernameWileyen
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYen
dcterms.bibliographicCitation.pageend2988en
dcterms.bibliographicCitation.pagestart2977en
dcterms.bibliographicCitation.volume12en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
CCTC_CCTC202000035.pdf
Size:
7.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections