Optimized immobilization of ZnO:Co electrocatalysts realizes 5% efficiency in photoassisted splitting of water

dc.contributor.authorAzarpira, Anahita
dc.contributor.authorPfrommer, Johannes
dc.contributor.authorOlech, Katarzyna
dc.contributor.authorHöhn, Christian
dc.contributor.authorDrieß, Matthias
dc.contributor.authorStannowski, Bernd
dc.contributor.authorSchedel-Niedrig, Thomas
dc.contributor.authorLublow, Michael
dc.date.accessioned2017-10-24T09:18:42Z
dc.date.available2017-10-24T09:18:42Z
dc.date.issued2016
dc.descriptionDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.de
dc.descriptionThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.en
dc.descriptionCorrection: There is an error in Fig. 8 of the manuscript. The correct Fig. 8 is shown in the additional file. To cite the Correction refer to DOI:10.1039/c6ta90030e.en
dc.description.abstractOrganic solvents with varied electrophoretic mobility have been employed for deposition of nanocrystalline ZnO: Co particles onto fluorinated tin oxide supports. Evaluation of the electrochemical activity for the oxygen evolution reaction proves a clear solvent-dependence with highest activity upon deposition from acetonitrile and lowest activity upon deposition from ethanol. Analysis of the resulting layer thickness and density attributes the improved electrochemical activity of acetonitrile-prepared samples to larger film thicknesses with lower film densities, i.e. to films with higher porosity. The findings suggest that the ZnO: Co films represent an initially nanocrystalline system where the catalytic activity is predominantly confined to a thin surface region rather than to comprise the entire volume. Closer inspection of this surface region proves successive in operando transformation of the nanocrystalline to an amorphous phase during evolution of oxygen. Furthermore, less active but highly transparent ZnO: Co phases, prepared from ethanol-containing suspensions, can be successfully employed in a stacking configuration with a low-cost triple-junction solar cell. Thereby, a solar-to-hydrogen efficiency of 5.0% in splitting of water at pH 14 could be realized. In contrast, highly light-absorbing acetonitrile/acetone-prepared samples limit the efficiency to about 1%, demonstrating thus the decisive influence of the used organic solvent upon electrophoretic deposition. Stability investigations over several days finally prove that the modular architecture, applied here, represents an attractive approach for coupling of highly active electrocatalysts with efficient photovoltaic devices.en
dc.description.sponsorshipBMBF, 03IS2071F, Light2Hydrogen - Energien für die Zukunften
dc.description.sponsorshipDFG, SPP 1613, Regenerativ erzeugte Brennstoffe durch lichtgetriebene Wasserspaltung: Aufklärung der Elementarprozesse und Umsetzungsperspektiven auf technologische Konzepteen
dc.identifier.eissn2050-7496
dc.identifier.issn2050-7488
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/6922
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-6261
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftende
dc.subject.ddc530 Physikde
dc.titleOptimized immobilization of ZnO:Co electrocatalysts realizes 5% efficiency in photoassisted splitting of wateren
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1039/c5ta07329d
dcterms.bibliographicCitation.doi10.1039/c6ta90030e
dcterms.bibliographicCitation.issue8
dcterms.bibliographicCitation.journaltitleJournal of materials chemistry : A, Materials for energy and sustainabilityen
dcterms.bibliographicCitation.originalpublishernameRoyal Society of Chemistryde
dcterms.bibliographicCitation.originalpublisherplaceCambridgede
dcterms.bibliographicCitation.pageend3090
dcterms.bibliographicCitation.pagestart3082
dcterms.bibliographicCitation.volume4
tub.accessrights.dnbdomain
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Chemie::FG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupFG Metallorganische Chemie und Anorganische Materialiende
tub.affiliation.instituteInst. Chemiede
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 2 of 2
Loading…
Thumbnail Image
Name:
c5ta07329d.pdf
Size:
1.21 MB
Format:
Adobe Portable Document Format
Description:
Article
Loading…
Thumbnail Image
Name:
c6ta90030e.pdf
Size:
204.18 KB
Format:
Adobe Portable Document Format
Description:
Correction

Collections