Loading…
Thumbnail Image

Vertical cavity surface emitting lasers (VCSELs) and VCSEL arrays for communication and sensing

Haghighi, Nasibeh

Future generations of optical wireless communication and sensing systems require compact, low-cost, reliable, and highly efficient light sources capable of transmitting modulated beams across free space at gigabit per second (Gbps) data rates and pulsed beams with sub-nanosecond rise and fall times. The infrared vertical cavity surface emitting laser (VCSEL) is exactly one such light source. Fifth generation (5G) systems promise to connect billions of people and trillions of Internet of Things gadgets and sensors at 1 to beyond 20 Gbps via newly auctioned millimeter wave (30 GHz to 300 GHz) spectral bands. By circa 2030 sixth generation (6G) systems envision vast broadband capacity with zero latency – enabling real-time virtual and mixed realities, human-machine interfaces, autonomous vehicles, and much more. The 6G technology adds terahertz wave emitters including infrared VCSELs and VCSEL arrays to vastly increase data rates, boost energy and spectral efficiency, and take advantage of available and unregulated spectral bands. I design, fabricate, and test new experimental VCSEL diodes and novel two-dimensional (2D) VCSEL diode arrays. I study the physics and performance trade-offs of VCSEL light emitters aimed at 5G and 6G optical wireless communication and sensing applications. Via in-house computer modeling and simulation programs, I design VCSEL epitaxial structures – composed of nanometer-thick aluminum-gallium-arsenide, indium-gallium arsenide, and gallium-arsenide-phosphide layers – with peak target emission wavelengths of 940 and 980 nanometers. A commercial foundry grows my experimental VCSEL epitaxial wafers by metal-organic vapor phase epitaxy on 3-inch diameter gallium-arsenide substrates. In my university cleanroom, I fabricate my VCSELs as quarter wafer test pieces using a new VCSEL Array 2018 mask set which contains single VCSELs, and several variations of novel 2D electrically parallel triple (3-element), septuple (7-element), and novemdecuple (19-element) geometric device designs. My fabricated devices feature high frequency, coplanar ground-signal-ground metal contact pads, and top-epitaxial-surface emission. I perform all device tests in my university laser diode laboratory via direct, on-wafer electrical probing under computer control, starting with continuous wave light output power-current-voltage sweeps via a calibrated photodiode-integrating sphere and variable current source. For emission spectra and small-signal frequency response measurements, I collect the emitted VCSEL light with a standard OM1 multiple mode optical fiber (MMF) – connected to either an optical spectrum analyzer or a photoreceiver. For on-wafer data transmission tests across OM1 MMF patch cords, I modulate my VCSELs with nonreturn to zero, pseudorandom bit patterns in the form of 2-level pulse amplitude modulation. I achieve record combinations of optical output power, bandwidth, and efficiency for my large oxide aperture diameter (larger than 20 micrometers) VCSELs and for my VCSEL arrays. For example, I demonstrate 200 milliwatts of optical output power, a bandwidth of 18 GHz, and a wall plug efficiency of 35 percent with a 19-element VCSEL array. I set several records for error free data transmission, for example, 40 Gbps for my triple and septuple VCSEL arrays and 25 Gbps for my novemdecuple VCSEL arrays, well beyond the previous record of 10 Gbps. My work is the first to investigate trade-offs in the highly nontrivial physics of VCSEL arrays aimed at high power and high bandwidth arrays for free space data transmission – producing new guiding principles for further device optimization and product development.
Zukünftige Generationen optischer drahtloser Kommunikations- und Sensorsysteme erfordern kompakte, kostengünstige, zuverlässige und hocheffiziente Lichtquellen, die modulierte Strahlen mit Datenraten von Gigabit pro Sekunde (Gbps) und gepulste Strahlen mit Anstieg- und Abfallzeiten im Sub-Nanosekundenbereich über den freien Raum übertragen können. Infrarote, oberflächenemittierende Laser mit vertikaler Kavität (VCSEL) sind genau eine solche Lichtquelle. Systeme der fünften Generation (5G) versprechen, Milliarden von Menschen und Billionen von Geräten und Sensoren für das Internet der Dinge mit 1 bis über 20 Gbps über neu versteigerte Millimeterwellen-Spektralbänder (30 GHz bis 300 GHz) zu verbinden. Bis etwa 2030 sehen Systeme der sechsten Generation (6G) eine enorme Breitbandkapazität ohne Latenzzeit vor – sie ermöglichen virtuelle und gemischte Realitäten in Echtzeit, Mensch-Maschine-Schnittstellen, autonome Fahrzeuge und vieles mehr. Die 6G-Technologie fügt Terahertz-Wellensender hinzu, einschließlich Infrarot-VCSELs und VCSEL-Arrays, um die Datenraten signifikant zu erhöhen, die Energie- und Spektraleffizienz zu steigern und die verfügbaren und noch unregulierten Spektralbänder zu nutzen. In der vorliegenden Arbeit werden neue experimentelle VCSEL-Dioden und neuartige zweidimensionale (2D) VCSEL-Diodenarrays entworfen, hergestellt und getestet. Die Physik der VCSEL-Lichtemittern, welche auf 5G- und 6G-optische drahtlose Kommunikations- und Sensoranwendungen ausgerichtet sind, wird untersucht und Performance-Tradeoffs für die angedachten Anwendungen werden identifiziert und analysiert. Über hauseigene Computermodellierungs- und Simulationsprogramme wurden epitaktische VCSEL-Strukturen – bestehend aus nanometerdicken Aluminium-Gallium-Arsenid-, Indium-Gallium-Arsenid- und Gallium-Arsenid-Phosphid-Schichten – mit Peak-Zielemissionswellenlängen von 940 und 980 Nanometern entworfen. Ein kommerzieller Hersteller hat die experimentellen VCSEL-Epitaxiewafer durch metallorganische Gasphasenepitaxie auf Gallium-Arsenid-Substraten mit einem Durchmesser von 3 Zoll gewachsen. In einem Reinraum an der Universität wurden die VCSELs als Viertelwafer-Teststücke mit einem neuen VCSEL Array 2018-Maskensatz gefertigt, der einzelne VCSELs und mehrere Variationen von neuartigen elektrisch parallelen 2D-Tripel- (3-Element), Septuple- (7-Element) und Novemdecuple- (19-Elemente) Strukturdesigns enthält. Bei den prozessierten Strukturen handelt es sich um Top-Emitter mit hochfrequenzkompatiblen koplanare Masse-Signal-Masse-Metallkontaktpads. Alle Device-Tests wurden computergesteuert in einem universitären Laserdiodenlabor durch direktes elektrisches On-Wafer Probing durchgeführt, beginnend mit Dauerstrich-Lichtausgangsleistung-Strom-Spannungs-Sweeps über eine kalibrierte Photodioden-Integrationskugel und eine variable Stromquelle. Für Emissionsspektren und Kleinsignal-Frequenzgangmessungen wurde das emittierte VCSEL-Licht mit einer standardmäßigen OM1-Multimode-Glasfaser (MMF) eingesammelt – verbunden mit einem optischen Spektrumanalysator oder einem Fotoempfänger. Für On-Wafer-Datenübertragungstests über OM1-MMF-Patchkabel wurden die VCSELs mit pseudozufälligen Bitmustern im Non-Return-To-Zero Format mit 2-Level-Pulsamplitudenmodulation moduliert. In dieser Arbeit werden bisher unerreichte Kombinationen von optischer Ausgangsleistung, Bandbreite und Effizienz für VCSEL und VCSEL-Arrays mit großer Oxid-Apertur (größer als 20 Mikrometer) demonstriert. Beispielsweise werden 200 Milliwatt optische Ausgangsleistung, eine Bandbreite von 18 GHz und eine Konversionseffizienz elektrischer zu optischer Leistung von 35 Prozent mit einem 19-Element-VCSEL-Array erreicht. Zudem werden mehrere Rekorde für fehlerfreie Datenübertragung aufgestellt, zum Beispiel 40 Gbps für Triple- und Septuple-VCSEL-Arrays und 25 Gbps für Novemdecuple-VCSEL-Arrays, weit über den bisherigen Stand der Technik von 10 Gbps hinaus. Diese Arbeit ist die erste, die Trade-Offs in der hochgradig nichttrivialen Physik von VCSEL-Arrays untersucht, die auf Arrays mit hoher Leistung und hoher Bandbreite für die Datenübertragung im freien Raum abzielen – und damit neue Leitprinzipien für die weitere Bauelementoptimierung und Produktentwicklung schafft.