Developing a photonic hardware platform for brain-inspired computing based on 5 × 5 VCSEL arrays

dc.contributor.authorHeuser, Tobias
dc.contributor.authorPflüger, Moritz
dc.contributor.authorFischer, Ingo
dc.contributor.authorLott, James
dc.contributor.authorBrunner, Daniel
dc.contributor.authorReitzenstein, Stephan
dc.date.accessioned2021-01-13T14:04:16Z
dc.date.available2021-01-13T14:04:16Z
dc.date.issued2020-08-25
dc.description.abstractBrain-inspired computing concepts like artificial neural networks have become promising alternatives to classical von Neumann computer architectures. Photonic neural networks target the realizations of neurons, network connections and potentially learning in photonic substrates. Here, we report the development of a nanophotonic hardware platform of fast and energy-efficient photonic neurons via arrays of high-quality vertical cavity surface emitting lasers (VCSELs). The developed 5 × 5 VCSEL arrays provide high optical injection locking efficiency through homogeneous fabrication combined with individual control over the laser wavelengths. Injection locking is crucial for the reliable processing of information in VCSEL-based photonic neurons, and we demonstrate the suitability of the VCSEL arrays by injection locking measurements and current-induced spectral fine-tuning. We find that our investigated array can readily be tuned to the required spectral homogeneity, and as such show that VCSEL arrays based on our technology can act as highly energy efficient and ultra-fast photonic neurons for next generation photonic neural networks. Combined with fully parallel photonic networks our substrates are promising for ultra-fast operation reaching 10 s of GHz bandwidths, and we show that a single non-linear transformation based on our lasers will consume only about 100 fJ per VCSEL, which is highly competitive, compared to other platforms.en
dc.identifier.eissn2515-7647
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/12431
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-11273
dc.language.isoenen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subject.ddc530 Physikde
dc.subject.otherphotonic reservoir computingen
dc.subject.othervertical cavity surface emitting laser arrayen
dc.subject.otherinjection lockingen
dc.subject.otherneuromorphic hardwareen
dc.titleDeveloping a photonic hardware platform for brain-inspired computing based on 5 × 5 VCSEL arraysen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.articlenumber044002en
dcterms.bibliographicCitation.doi10.1088/2515-7647/aba671en
dcterms.bibliographicCitation.issue4en
dcterms.bibliographicCitation.journaltitleJournal of Physics: Photonicsen
dcterms.bibliographicCitation.originalpublishernameIOPen
dcterms.bibliographicCitation.originalpublisherplaceBristolen
dcterms.bibliographicCitation.volume2en
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Festkörperphysik::AG Optoelektronik und Quantenbauelementede
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.groupAG Optoelektronik und Quantenbauelementede
tub.affiliation.instituteInst. Festkörperphysikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Heuser_etal_Developing_2020.pdf
Size:
3.05 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections