Brain–computer interfacing under distraction: an evaluation study

dc.contributor.authorBrandl, Stephanie
dc.contributor.authorFrølich, Linda
dc.contributor.authorHöhne, Johannes
dc.contributor.authorMüller, Klaus-Robert
dc.contributor.authorSamek, Wojciech
dc.date.accessioned2020-04-08T10:57:02Z
dc.date.available2020-04-08T10:57:02Z
dc.date.issued2016-08-31
dc.description.abstractObjective. While motor-imagery based brain–computer interfaces (BCIs) have been studied over many years by now, most of these studies have taken place in controlled lab settings. Bringing BCI technology into everyday life is still one of the main challenges in this field of research. Approach. This paper systematically investigates BCI performance under 6 types of distractions that mimic out-of-lab environments. Main results. We report results of 16 participants and show that the performance of the standard common spatial patterns (CSP) + regularized linear discriminant analysis classification pipeline drops significantly in this 'simulated' out-of-lab setting. We then investigate three methods for improving the performance: (1) artifact removal, (2) ensemble classification, and (3) a 2-step classification approach. While artifact removal does not enhance the BCI performance significantly, both ensemble classification and the 2-step classification combined with CSP significantly improve the performance compared to the standard procedure. Significance. Systematically analyzing out-of-lab scenarios is crucial when bringing BCI into everyday life. Algorithms must be adapted to overcome nonstationary environments in order to tackle real-world challenges.en
dc.description.sponsorshipBMBF, 01GQ1115, Adaptive Gehirn-Computer-Schnittstellen (BCI) in nichtstationären Umgebungenen
dc.identifier.eissn1741-2552
dc.identifier.issn1741-2560
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/10979
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-9870
dc.language.isoenen
dc.relation.issupplementedby10.14279/depositonce-9827
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc006 Spezielle Computerverfahrende
dc.subject.otherbrain-computer interfaceen
dc.subject.otherBCIen
dc.subject.otherperformanceen
dc.subject.otherout-of-lab environmenten
dc.subject.othercommon spatial patternsen
dc.subject.otherCSPen
dc.subject.otherregularized linear discriminant analysisen
dc.subject.otherRLDAen
dc.titleBrain–computer interfacing under distraction: an evaluation studyen
dc.typeArticleen
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.articlenumber056012en
dcterms.bibliographicCitation.doi10.1088/1741-2560/13/5/056012en
dcterms.bibliographicCitation.issue5en
dcterms.bibliographicCitation.journaltitleJournal of Neural Engineeringen
dcterms.bibliographicCitation.originalpublishernameInstitute of Physics Publishing (IOP)en
dcterms.bibliographicCitation.originalpublisherplaceBristolen
dcterms.bibliographicCitation.volume13en
tub.accessrights.dnbfreeen
tub.affiliationFak. 4 Elektrotechnik und Informatik::Inst. Softwaretechnik und Theoretische Informatik::FG Maschinelles Lernende
tub.affiliation.facultyFak. 4 Elektrotechnik und Informatikde
tub.affiliation.groupFG Maschinelles Lernende
tub.affiliation.instituteInst. Softwaretechnik und Theoretische Informatikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
brandl_etal_2016.pdf
Size:
11.28 MB
Format:
Adobe Portable Document Format
Description:
Accepted manuscript
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.9 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections