Engineering Vascular Self‐Assembly by Controlled 3D‐Printed Cell Placement

dc.contributor.authorOrellano, Isabel
dc.contributor.authorThomas, Alexander
dc.contributor.authorHerrera, Aaron
dc.contributor.authorBrauer, Erik
dc.contributor.authorWulsten, Dag
dc.contributor.authorPetersen, Ansgar
dc.contributor.authorKloke, Lutz
dc.contributor.authorDuda, Georg N.
dc.date.accessioned2023-05-16T13:41:38Z
dc.date.available2023-05-16T13:41:38Z
dc.date.issued2022-11-02
dc.date.updated2023-04-20T00:17:21Z
dc.description.abstractNutrient supply via a functional vasculature is essential during regenerative processes, tissue growth, and homeostasis. 3D bioprinting offers the opportunity to engineer vascularized constructs by combining cells and biocompatible materials in specifically designed fashions. However, the complexity of microvascular dynamic networks can hardly be recapitulated yet, even by sophisticated 3D manufacturing. Ideally, the natural organizational competences of endothelial cells will be harnessed such that engineered vascular networks self‐assemble to form complex, controllable microvascular patterns. Here, a bioengineering approach is presented to control microvascular structure formation and to steer cellular self‐assembly of endothelial and supporting cells within a multi‐material stereolithographic 3D bioprinting concept. Bioengineered vascularized constructs are generated by controlled cell deposition in an enzymatically degradable or a non‐degradable material. In vitro, the microvascular structures are regulated in distribution, network orientation, vessel length and branching behavior and developed lumen, signs of vascular stabilization and an interconnected vascular network including anastomosis. This novel biofabrication approach demonstrates the capability to control microvascular network formation by using cellular and spatial cues allowing the generation of distinctly yet precisely vascularized constructs. Such novel approach of controlled microvascular formation may play a fundamental role in the development of vascularized implants or in vitro screening models.en
dc.description.sponsorshipDFG, 249509554, FOR 2165: Regeneration im Alter: Die Knochenheilung als Modelsystem zur Charakterisierung der Regeneration unter erschwerten Bedingungen
dc.description.sponsorshipDFG, 427826188, SFB 1444: Gerichtete zelluläre Selbstorganisation zur Förderung der Knochenregeneration
dc.identifier.eissn1616-3028
dc.identifier.issn1616-301X
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/18889
dc.identifier.urihttps://doi.org/10.14279/depositonce-17694
dc.language.isoen
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.subject.otherbioprinting
dc.subject.othercontrollable microvascular patterning
dc.subject.otherstereolithography
dc.subject.othertissue engineering
dc.subject.othervasculature
dc.titleEngineering Vascular Self‐Assembly by Controlled 3D‐Printed Cell Placementen
dc.typeArticle
dc.type.versionpublishedVersion
dcterms.bibliographicCitation.articlenumber2208325
dcterms.bibliographicCitation.doi10.1002/adfm.202208325
dcterms.bibliographicCitation.issue52
dcterms.bibliographicCitation.journaltitleAdvanced Functional Materialsen
dcterms.bibliographicCitation.originalpublishernameWiley
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY
dcterms.bibliographicCitation.volume32
dcterms.rightsHolder.referenceCreative-Commons-Lizenz
tub.accessrights.dnbfree
tub.affiliationFak. 3 Prozesswissenschaften::Inst. Biotechnologie::FG Medizinische Biotechnologie
tub.publisher.universityorinstitutionTechnische Universität Berlin

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
ADFM_ADFM202208325.pdf
Size:
15.52 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections