New Length Bounds for Cycle Bases

dc.contributor.authorElkin, Michael
dc.contributor.authorLiebchen, Christian
dc.contributor.authorRizzi, Romeo
dc.date.accessioned2021-12-17T10:07:30Z
dc.date.available2021-12-17T10:07:30Z
dc.date.issued2007
dc.description.abstractBased on a recent work by Abraham, Bartal and Neiman (2007), we construct a strictly fundamental cycle basis of length O(n2) for any unweighted graph, whence proving the conjecture of Deo et al. (1982).en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15619
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14392
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherminimum cycle basis problemen
dc.subject.othertree metricsen
dc.subject.otherDeo's conjectureen
dc.titleNew Length Bounds for Cycle Basesen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2007, 22en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen

Files

Original bundle
Now showing 1 - 2 of 2
Loading…
Thumbnail Image
Name:
Report-022-2007.pdf
Size:
283.52 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Report-022-2007.ps.gz
Size:
277.96 KB
Format:
Unknown data format

Collections