A Finite-Time Thermodynamics of Unsteady Fluid Flows

dc.contributor.authorNoack, Bernd R.
dc.contributor.authorSchlegel, Michael
dc.contributor.authorAhlborn, Boye
dc.contributor.authorMutschke, Gerd
dc.contributor.authorMorzyński, Marek
dc.contributor.authorComte, Pierre
dc.contributor.authorTadmor, Gilead
dc.date.accessioned2018-10-01T14:44:39Z
dc.date.available2018-10-01T14:44:39Z
dc.date.issued2008
dc.descriptionDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.de
dc.descriptionThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.en
dc.description.abstractTurbulent fluid has often been conceptualized as a transient thermodynamic phase. Here, a finite-time thermodynamics (FTT) formalism is proposed to compute mean flow and fluctuation levels of unsteady incompressible flows. The proposed formalism builds upon the Galerkin model framework, which simplifies a continuum 3D fluid motion into a finite-dimensional phase-space dynamics and, subsequently, into a thermodynamics energy problem. The Galerkin model consists of a velocity field expansion in terms of flow configuration dependent modes and of a dynamical system describing the temporal evolution of the mode coefficients. Each mode is treated as one thermodynamic degree of freedom, characterized by an energy level. The dynamical system approaches local thermal equilibrium (LTE) where each mode has the same energy if it is governed only by internal (triadic) mode interactions. However, in the generic case of unsteady flows, the full system approaches only partial LTE with unequal energy levels due to strongly mode-dependent external interactions. The FTT model is first illustrated by a traveling wave governed by a 1D Burgers equation. It is then applied to two flow benchmarks: the relatively simple laminar vortex shedding, which is dominated by two eigenmodes, and the homogeneous shear turbulence, which has been modeled with 1459 modes.en
dc.identifier.eissn1437-4358
dc.identifier.issn0340-0204
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/8260
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-7411
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc530 Physikde
dc.subject.otherfinite-time thermodynamicsen
dc.subject.otherFTTen
dc.subject.otherGalerkin model frameworken
dc.subject.otherflow benchmarken
dc.titleA Finite-Time Thermodynamics of Unsteady Fluid Flowsen
dc.typeArticleen
dc.type.versionpublishedVersionen
dcterms.bibliographicCitation.doi10.1515/JNETDY.2008.006
dcterms.bibliographicCitation.issue2
dcterms.bibliographicCitation.journaltitleJournal of non-equilibrium thermodynamicsen
dcterms.bibliographicCitation.originalpublishernameDe Gruyteren
dcterms.bibliographicCitation.originalpublisherplaceBerlinen
dcterms.bibliographicCitation.pageend148
dcterms.bibliographicCitation.pagestart103
dcterms.bibliographicCitation.volume33
tub.accessrights.dnbdomain
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Strömungsmechanik und Technische Akustik (ISTA)de
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.instituteInst. Strömungsmechanik und Technische Akustik (ISTA)de
tub.publisher.universityorinstitutionTechnische Universität Berlinde

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
noack_etal_2008.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format

Collections