Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters

dc.contributor.authorDas, Pratibhamoy
dc.contributor.authorMehrmann, Volker
dc.date.accessioned2021-12-17T10:12:26Z
dc.date.available2021-12-17T10:12:26Z
dc.date.issued2014-08-05
dc.description.abstractThis paper discusses the numerical solution of 1-D convection-diffusion-reaction problems that are singularly perturbed with two small parameters using a new mesh-adaptive upwind scheme that adapts to the boundary layers. The meshes are generated by the equidistribution of a special positive monitor function. Uniform, parameter independent convergence is shown and holds even in the limit that the small parameters are zero. Numerical experiments are presented that illustrate the theoretical findings, and show that the new approach has better accuracy compared with current methods.en
dc.identifier.issn2197-8085
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/15815
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-14588
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc510 Mathematiken
dc.subject.otherparabolic partial differential equationen
dc.subject.otherconvection-diffusion-reaction problemen
dc.subject.otherupwind schemeen
dc.subject.otheradaptive meshen
dc.subject.othermesh equidistributionen
dc.subject.othertwo parameter singular perturbation problemen
dc.subject.otheruniform convergenceen
dc.titleNumerical solution of singularly perturbed convection-diffusion-reaction problems with two small parametersen
dc.typeResearch Paperen
dc.type.versionsubmittedVersionen
tub.accessrights.dnbfreeen
tub.affiliationFak. 2 Mathematik und Naturwissenschaften::Inst. Mathematikde
tub.affiliation.facultyFak. 2 Mathematik und Naturwissenschaftende
tub.affiliation.instituteInst. Mathematikde
tub.publisher.universityorinstitutionTechnische Universität Berlinen
tub.series.issuenumber2014, 13en
tub.series.namePreprint-Reihe des Instituts für Mathematik, Technische Universität Berlinen
tub.subject.msc200065L06 Multistep, Runge-Kutta and extrapolation methodsen
tub.subject.msc200065M12 Stability and convergence of numerical methodsen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
DasM14.pdf
Size:
158.02 KB
Format:
Adobe Portable Document Format

Collections