Loading…
Thumbnail Image

230 s room-temperature storage time and 1.14 eV hole localization energy in In0.5Ga0.5As quantum dots on a GaAs interlayer in GaP with an AlP barrier

Bonato, Leo; Sala, Elisa M.; Stracke, Gernot; Nowozin, Tobias; Strittmatter, André; Ajour, Mohammed Nasser; Daqrouq, Khaled; Bimberg, Dieter

A GaP n+p-diode containing In0.5Ga0.5As quantum dots (QDs) and an AlP barrier is characterized electrically, together with two reference samples: a simple n+p-diode and an n+p-diode with AlP barrier. Localization energy, capture cross-section, and storage time for holes in the QDs are determined using deep-level transient spectroscopy. The localization energy is 1.14(±0.04) eV, yielding a storage time at room temperature of 230(±60) s, which marks an improvement of 2 orders of magnitude compared to the former record value in QDs. Alternative material systems are proposed for still higher localization energies and longer storage times.
Published in: Applied Physics Letters, 10.1063/1.4906994, American Institute of Physics (AIP)
  • This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 106, 042102 (2015) and may be found at https://doi.org/10.1063/1.4906994.