Thumbnail Image

Properties of worst-case GMRES

Faber, Vance; Liesen, Jörg; Tichý, Petr

In the convergence analysis of the GMRES method for a given matrix $A$, one quantity of interest is the largest possible residual norm that can be attained, at a given iteration step $k$, over all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for $A$ and $k$. We show that the worst-case behavior of GMRES for the matrices $A$ and $A^T$ is the same, and we analyze properties of initial vectors for which the worst-case residual norm is attained. In particular, we prove that such vectors satisfy a certain “cross equality.” We show that the worst-case GMRES polynomial may not be uniquely determined, and we consider the relation between the worst-case and the ideal GMRES approximations, giving new examples in which the inequality between the two quantities is strict at all iteration steps $k\geq 3$. Finally, we give a complete characterization of how the values of the approximation problems change in the context of worst-case and ideal GMRES for a real matrix, when one considers complex (rather than real) polynomials and initial vectors.
Published in: SIAM Journal on Matrix Analysis and Applications, 10.1137/13091066X, Society for Industrial and Applied Mathematics