Instability of forced planar liquid jets: mean field analysis and nonlinear simulation

dc.contributor.authorSchmidt, Simon
dc.contributor.authorOberleithner, Kilian
dc.date.accessioned2022-09-16T09:59:10Z
dc.date.available2022-09-16T09:59:10Z
dc.date.issued2019-11-25
dc.description.abstractThe stability of forced planar liquid jets in a still gaseous environment is explored using nonlinear simulation and spatial linear stability analysis. Harmonic modulation of the transverse component of the inlet velocity leads to an excitation of sinuous modes in the jet. Two forcing amplitudes, 1 % and 5 %, are investigated. While for 1 % forcing, the interfacial disturbance retains a sinuous shape throughout the domain, for 5 % forcing, an increasing downstream deviation from the sinuous wave shape is found. Both forcings lead to sufficient mean flow correction to render linear stability analysis on a base flow unfeasible. Hence, an analysis on the time-averaged mean flow is performed. A correction scheme is introduced, to account for the spreading of the interface position in the mean flow. Comparison of eigenfunctions and growth rates with their counterparts from the nonlinear simulation shows an excellent agreement for 1 % forcing. For 5 % forcing, agreement of the eigenfunctions deteriorates significantly and growth rates are falsely predicted, resulting in a breakdown of the stability model. Subsequent analysis reveals a strong interaction of the fundamental wave with the second higher harmonic wave for 5 % forcing and a reversed energy flow from the coherent motion to the mean flow. These findings provide an explanation for the failure of the linear stability model for large forcing amplitudes. The study extends the applicability of mean flow stability analysis to convectively unstable planar liquid/gas jets and supports previous findings on the limits of mean flow stability, involving pronounced influence of higher harmonic modes.en
dc.identifier.eissn1469-7645
dc.identifier.issn0022-1120
dc.identifier.urihttps://depositonce.tu-berlin.de/handle/11303/17478
dc.identifier.urihttp://dx.doi.org/10.14279/depositonce-16259
dc.language.isoenen
dc.relation.ispartof10.14279/depositonce-15846
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en
dc.subject.ddc532 Mechanik der Fluide, Mechanik der Flüssigkeitende
dc.subject.otherlinear stability analysisen
dc.subject.othertwo-phase flowen
dc.subject.othershear flowen
dc.subject.othernonlinear dynamicsen
dc.subject.otherfluid instabilityen
dc.subject.otherlineare Stabilitätsanalysede
dc.subject.otherZweiphasenströmungde
dc.subject.otherScherströmungde
dc.subject.othernichtlineare Dynamikde
dc.subject.otherStrömungsinstabilitätde
dc.titleInstability of forced planar liquid jets: mean field analysis and nonlinear simulationen
dc.typeArticleen
dc.type.versionacceptedVersionen
dcterms.bibliographicCitation.doi10.1017/jfm.2019.855en
dcterms.bibliographicCitation.journaltitleJournal of Fluid Mechanicsen
dcterms.bibliographicCitation.originalpublishernameCambridge University Pressen
dcterms.bibliographicCitation.originalpublisherplaceCambridge [u.a.]en
dcterms.bibliographicCitation.volume883en
tub.accessrights.dnbfreeen
tub.affiliationFak. 5 Verkehrs- und Maschinensysteme::Inst. Strömungsmechanik und Technische Akustik (ISTA)::FG Dynamik instabiler Strömungende
tub.affiliation.facultyFak. 5 Verkehrs- und Maschinensystemede
tub.affiliation.groupFG Dynamik instabiler Strömungende
tub.affiliation.instituteInst. Strömungsmechanik und Technische Akustik (ISTA)de
tub.publisher.universityorinstitutionTechnische Universität Berlinen

Files

Original bundle
Now showing 1 - 1 of 1
Loading…
Thumbnail Image
Name:
Schmidt_Oberleithner_Instability_2019.pdf
Size:
14.77 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.86 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections